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0.1

Introduction

Features:

All Computations are parallelised for MultiCore and NuMA Systems.
All Computations may be run on massively parallel Systems, such as Clusters of WhatEver.

The Device under Test may contain lossy, dispersive Materials, both for Time Domain
and Eigenvalue Computations. Absorbing Boundary Conditions may be applied for lossy
Eigenvalue Computations. Impedance Boundary Conditions may be applied for Time
Domain Computations.

Periodic Boundary Conditions for all three cartesian Directions can be specified simulta-
neously for loss-free Eigenvalue Computations.

The Device under Test is approximated by generalised diagonal Fillings. The Approxi-
mation Error is reduced about by a Factor of Ten, compared to an Approximation with
simple diagonal Fillings.

The Time Domain Computation and lossy Eigenvalue Computation uses ” Perfectly Matched
Layers” for their Absorbing Boundary Conditions.

Short Range Wakepotential Computations may be performed using a moving Window
enclosing the interesting Region. The Fields are computed using a Strang-Splitting Scheme
with zero Dispersion-Error for Waves travelling in strictly z-Direction, or a higher Order
FDTD Scheme with low Dispersion-Error for all Kinds of Waves.

The Programs can be run interactively. The Commands are explained when you type the
special Command help.

The Solver and the Postprocessor have a built-in macro Processor.

— You may define Symbols storing numerical Values or character Values.
— Arithmetic Expression Evaluator.

— You can groups of Commands as MACROs. The MACROs can have an unlimited
Amount of Parameters.

— ’do-loop’s are implemented.

— ’if? “elseif’ ’else’ ’end if’

Almost all Commands may be abbreviated as long the Abbreviation is unique in Context.

GdfidL consists of 5 separate Programs that work together. These Programs are:

gdl & single.gd1l: These Programs read the Description of the Problem and compute
resonant Fields or time dependent Fields. gd1l computes in Double Precision, while sin-

gle.gd1 computes in Single Precision. single.gd1 needs somewhat less Memory and often
less CPU-Time.

gdl.pp : This is the Postprocessor. It displays the Fields, computes Integrals over the
Fields to compute quality Factors and the like. It also computes scattering Parameters
and Wakepotentials from Data that have been computed by gd1 or single.gd1.
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e gdl1.3dplot: This Program displays the 3D-Plots on a X11 Window and produces PostScript
Files.

e mymtv2: This Program displays the 1D and 2D-Plots on a X11 Window and produces
PostScript Files.

mymtv2 was not written by us. It is a (slightly) modified Version of the Program plotmtv
written by Kenny Toh. The original Sources for plotmtv can be found on the Internet: plotmtv
can be found at ftp.x.org: /contrib/applications/Plotmtv.1.3.2.tar.Z



Chapter 1

gdl

1.1 Typical Usage of gd1l

gd1 reads its Information from the Standard Input Unit. You will normally use two or more
xterms to operate gd1. In one of the xterms you edit an Inputfile that describes your Device,
in the other xterm you iteratively start gd1 and try out how gd1 reacts to your Input.

gd1 reads the Description of the Device that you are interested in from stdin or from a File
that you specify via include(filename). gdl generates the Mesh and computes the resonant
Fields or time dependent Fields. The Results are written to a Database that can be read by

gdl.pp.

1.2 Input for gdl

gd1’s Input is pure Text. You give gd1 the Information about the Problem to be analysed in
distinct Sections.

The required Information that you have to give gd1 is
e The Name of the Resultfile (-general).
e The Borders of the computational Volume (-mesh).
e The wanted Mesh-Spacing (-mesh).

e The boundary Conditions at the Borders of the computational Volume
(-mesh) (-fdtd/-ports) (-eigenvalues/-ports).

e The Description of the Device (-brick, -geeylinder, -ggeylinder, -gbor, -stlfile, -geofunction,
-transform).
e — For an Eigenvalue Computation:

* The wanted Number of Frequencies (-eigenvalues).
* An Estimation of the highest Frequency (-eigenvalues).
« For lossy Eigenvalues: The location of Ports (-eigenvalues/-ports, -fdtd/-ports).

— For a Time Domain Computation:

« The Location of Ports (-fdtd/-ports).
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« The Excitation (-fdtd/-pexcitation, -fdtd/-lcharge, -fdtd/-dipole).
* The minimal Time to be simulated (-fdtd/-time).
* The maximal Time to be simulated (-fdtd/-time).

The Symbols in the above Brackets indicate in which Section of gd1 you specify the required
Parameters.

1.3 Behind the Scenes: When the Mesh is generated

There is no standalone Meshgenerator. When you define a geometric Primitive, the only Thing
that happens immediately is that the Information about the geometric Primitive is stored in
an internal Database. When you say doit in the Section -eigenvalues, in the Section -fdtd
or in the Section -windowwake, the Mesh is generated on the Fly. When you display the
Mesh-Filling via the Section -volumeplot, the Mesh is also generated on the Fly.



1.4 General Sections

These are the Sections where you specify Parameters that are required for every Field Compu-

tation.
In the Section -general, you specify the Name of the File where the Results shall be written

to.
In the Section -mesh, you have to specify the Borderplanes of the computational Volume,
and the default Mesh Spacing. You also define the boundary Conditions at the Borderplanes

here.
In the Section -material, you specify the electric Properties of the Materials.



1.4.1 Entry Section

This is the Section you are in when you start gd1.

A R R R
# Flags: nomenu, noprompt, nomessage, #
G s s s T
# gdfidl (32) (V 3.8) (compiled Wed Sep 29 17:50:52 GMT 2021 on Host wb043) #
# VshzpnIb 210929 #
A R R
# —general —-— Output File, Annotations.

# -mesh -- Bounding Box, Spacing, fixed Meshplanes,

# -- Boundary Conditions.

# -material -- Material Properties.

# -lgeometry -- Load a previously used Geometry.

# *kkkk Geometric primitives *kkx

# -brick -- Simple rectangular Brick.

# —gccylinder -- Circular Cylinder in general Direction.

# -ggcylinder -- General Cylinder in general Direction.

# —gbor -- Body of Revolution in general Direction.

# -stlfile —-— CAD Import via STL-File.

# —-geofunction —-- Analytic Function.

# -transform -- Rotations etc

# ( -translate, -rotate )

# xxxkk Solver Sections *xxxk

# -eigenvalues  -- Resonant Fields

# ( -ports, -linitialfields )

# -fdtd —-- Time dependent Fields

# (-time, -ports, -pexcitation, -lcharges, -voltages, -dipole, -clouds
# -storefieldsat, -linitialfields, -fexport, —-fmonitor, -smonitor

# -pmonitor, -windowwake, -decaytime )

# -magnetostatic -- Magnetostatic Fields (rudimentary)

# ( -lcurrent )

# kokkokkokok

# -volumeplot —-- Displays Mesh Filling.

# -cutplot -- Displays Mesh Filling in a single Plane

# **xxxx Miscellanea *****x

# -—debug —-— Specify Debug Levels

#

H OH HF H OH O H H OH OH OH OH OH OH OH OH OH OHHHHHHHHH HHH

ittt A A A A A A A
# 7, end, help, __mdoit, __hwinfo #
HAHEHEH S S

The Menu shows all Sections. There are some Subsections, which you may also enter from within
any Section, these are shown in Brackets (). You enter a Section by specifying its Name.

Example

To enter the Section -general, you say



-general

As all Commands may be abbreviated, you may also say:

-ge



1.4.2 -general : Annotations, filenames

Here you specify where the Results shall be stored and where Scratchfiles shall be written to.
You may also document your Project by putting descriptive Text to the Plots.

B R s s s s s S s S s R

# Flags: nomenu, noprompt, nomessage, #
A R R
# Section: -general #
B L R L R L L L R R | L L L e R L R RIS IR R A
# outfile = /tmp/--username--/--SomeDirectory--/Results #
# scratchbase= /tmp//gdfidl-scratch-pid=000017295- #
# restartfiles= -none- #
#  tlrestartfiles= 1440 -— Minutes. When to write the first Set. #
#  dtrestartfiles= 1440 —-- Minutes. Distance between writing. #
#  stopafterrestartfiles=1000000000 -—- Stop after writing so often. #
# singlesetofrestartfiles= no -- yes: Write always the same Set. #
# text( 1)= " #
# text( 2)= #
# text( 3)= 7’ #
# text( 4)= #
# text( )= " #
# text( 6)= " " #
# text( 7)=" " #
# text( 8)= "’ 7’ #
# text( 9)= "’ #
# text(10)= > #
# text(11)= > #
# text(12)= 2 #
# text(13)= > 7 #
# text(14)= > 7 #
# text(1b6)= > #
# text(16)= > #
# text(17)= > #
# text(18)= 2 7 #
# text(19)= > 2 #
# text(20)= #
# uslices= auto -- PVM/MPI: [yes|nol|auto|llength]: #
# -- if [yesl|llength] : Partition in x,y or z only. #
# ndpw = auto -— PVM/MPI: Number of Dice per Worker #
# iodice = no -—- PVM : yes: Each Worker writes its own Results. #
# nrofthreads= 32 -- SMP and PVM/MPI: Nr of Threads per Worker. #
# ngangs= 16 -- How many Teams. #
# fmeshing= no -- [yes|nolauto]: #
# —-— Use Files while building the Mesh. #
# affinity= yes -— SMP: yes: Enforce Core Affinity. #
# spinwait= yes -— SMP: yes: Do not release CPU when a Thread waits. #
# hyperthreading= yes -- SMP: no: Schedule on real Cores. #

B S S S s s S s R



# 2dplotopts= —-geometry 690x560+10+10 #
# linecolor= 0 -— 0: foreground, 3: yellow #
# foreground= black -- black, white #
# Dbackground= white -- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
B L L L R L R L L L R R L I B R R R R IR BRI R R ST
## Syntax: #
# weightpoint= (Ui, Wi) #
L L s s s
# 7, return, help, clearweights, weightpoint= (..) #

HUFHH AR R R

e outfile The Name of the File! where the Results shall be stored in. This File may exist.
If it exists, then its GdfidL-Content will be overwritten.

e scratchbase The Base Name of Scratchfiles that gd1 needs for its Operation. If you have
an Environment Variable TMPDIR set, gd1 will as Default set scratchbase to the String

$TMPDIR/gdfidl-scratch-pid=XXXXX-

Here $TMPDIR is the Value of the Environment Variable TMPDIR, and XXXXX is the numerical
Value of the Process-id of gd1.

The Size of the Scratchfiles is sometimes more than the Amount of RAM that gd1 itself
needs. The Scratchfiles should be located on a Disk which is directly attached to the
compute Nodes. If the Scratchfiles are located on a Network attached Storage, a somewhat
longer computation Time is to be expected.

If you are preparing a System for using GdfidL, have about ten Times more directly
attached Scratch-Space than installed RAM on each compute Node.

e restartfiles This is for preparing a long running Computation to survive a System Crash.
The Value to give for restartfiles must be a valid Filename in a Filesystem, which
survives a System Crash, ie. a Filesystem which is not cleared at Boot Time. If a Value
for restartfiles is given, the Solver will write a Set at selected Times. There will be
up to two Sets of Restartfiles. There are two Sets, because according to Murphy’s Law
it will happen that a System Crash occurs just while one Set is being written. In such
a Case, the older Set still can be used. When the Restartfiles are written, a Comment
is given about how to use the Restartfiles. Essentially this is: you have to restart the
Computation on the same computer System (if using a parallel System: with the same
number of Tasks, using the same Nodes, using the same Executable), with an additional
Parameter on the Command Line of the Master Task. The additional Command Line
Parameter is -restartfiles=NAME-OF-SET .

Writing Restartfiles and Recovering also works with PVM/MPL.

!This will actually be a Directory. The Reason is: For current (2014) Workstations, it is quite easy to generate
Data in excess of 2GBytes. But many current Filesystems and OS-Tools cannot handle Files larger than 2GBytes.
So we chose to organise the computed Data as a Hierarchy of Files. A Directory is a Hierarchy of Files, so we
used just that.



You can also use this Facility to trick out Batch Systems. You can specify that Restartfiles
are to be written eg. after one Hour, and the Computation after writing the Restartfiles
shall stop. You then restart such a Computation. This Way, you can have long running
GdfidL. Computations in a batch Queue which only accepts Jobs with less than two Hours
Wall Clock Time.

— Enforcing writing of Restartfiles You may enforce Writing of Restartfiles, eg.
when you have a long running Computation, and the System Administaror asks
whether the System can be shut down:

Periodically gd1 checks whether a File $HOME/gdfidl.WriteRestartFilesNowAndStop
exists. If it exists, its Content is read. If the first Line contains a NonZero Number, all
running Computations will write their Restartfiles and stop afterwards. If the running
Computations did not have a Restartfile specified, the Content of the second Line of
$HOME/gdfidl.WriteRestartFilesNowAndStop will be used as the BaseName of the
Restartfiles. The Content of such a $HOME/gdfidl.WriteRestartFilesNowAndStop
File:

4711 # Some Nonzero Number will enforce writing of Restartfiles.
/scratch/Forced-Restartfile

tlrestartfiles First Time (in Minutes) to write Restartfiles.
dtrestartfiles Time Difference (in Minutes) between the Times when to write Restartfiles.

stopafterrestartfiles Number of Restartfile Sets to write. After that Number of Sets of
Restartfiles has been written, the Computation will stop.

text(*)= This Annotation Text is plotted together with the Result Plots. This is espe-
cially useful for documenting eg. the Geometry Parameters of a calculation.
syntax:
text ()= ANY STRING, NOT NECESSARILY QUOTED
or
text (NUMBER)= ANY STRING, NOT NECESSARILY QUOTED

— ANY STRING, NOT NECESSARILY QUOTED:
The string to be included in the plots,

— NUMBER:
Optional. The Line Number, where the Text should be plotted.

In the first Case, without NUMBER, the String following text ()= is placed in the next
free Line. In the Case with NUMBER, it is guaranteed, that the String is placed in the
NUMBER.st Line. You can specify up to 20 Annotation Strings, the maximum Length of
each Annotation String is 80 Characters.

ndpw= [auto|NUMBER] When computing on a Cluster, the computational Volume is
subdivided in NUMBER Subvolumes per Task. If ndpw=auto, the Number of Subvolumes
(dice) is chosen such that each Subvolume contains about 1 Million Grid Cells and the
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total Number of Subvolumes is larger than the total Number of Threads to use. The total
Number of Threads to use is NROFTHREADS times the number of Nodes used for the
parallel Run.

e iodice= [yes|no] When computing on a Cluster, the Result of each Subvolume is stored
on the local Disk of each Node. For this to work, OUTFILE must be a legal Filename on
each Node. For this to be useful, OUTFILE must be on a locally attached Filesystem. This
leads to faster writing of the Results, but longer Time for postprocessing of the Results.

This might be needed for very large parallel Computations where the computed electro-
magnetic Fields must be loaded into the Postprocessor for computing, eg. the Q-value. For
very large parallel Computations, it can happen that the computed Datasets are so large,
that the Postprocessor cannot handle the Amount of Data in its limited Address space
(32 bit Processors). Even on 64 bit Processors, the required Memory might be larger than
what is available on the used System. When iodice= yes, the Results are written to the
local Disks of the compute Nodes. When the Results shall be analysed by gd1.pp, on each
compute Node an instance of gd1.pp will be started to handle the local Amount of Data.

Only the PVM version of gd1.pp can be run in parallel. There is no MPI version of
gd1.pp, as MPI lacks some needed Functionality.

e nrofthreads= NTHREADS The Number of Threads to use. Each Thread uses one CPU-
Core. The really used Number of Cores will not be larger than the Number of really
available Cores on the used System.

e affinity= [yes|no] If yes, gdl attempts to schedule the Workload such that always
the same Cores are used. That gives better Performance on NuMA-Systems, if the used
System runs only one Instance of gd1, and essentially no other Load is present.

e spinwait= [yes|no] If yes, the Threads do not release their Cores when they are waiting.
This spin-wait gives better Performance if the used System runs only one Instance of gd1,
and essentially no other Load is present.

Example

The following specifies that the Results of the Computation shall be stored in the Database
named ’/Data/UserName/resultdirectory’. The Names of Scratchfiles that gd1 generates shall
start with ’/tmp/UserName/delete-me-". Restartfiles shall be written every 24 hours, and the
Names of the Restartfiles shall start with /Data/UserName/restartfile.

Together with the Plots that gd1.pp will produce, the Text 'Parameter is 45’ and "2*Parameter
is 90’ shall appear.

-general
outfile= /Data/UserName/resultdirectory
scratch= /tmp/UserName/delete-me-
restartfiles= /Data/UserName/restartfile
tlrestart= 24 * 60, dtrestart= 24 * 60

define (PARAMETER, 45)

text(1)= Parameter is PARAMETER
text (2)= 2%Parameter is eval (2*xPARAMETER)

11



Example

Tell GdfidLL that every XX Minutes, all Data describing the current State of Computation
shall be written to Files. From these Data, a Computation can be restarted. There is an Option,
that after eg. two Datasets written, the Computation shall stop.2 A Script, which restarts as
long as GdfidL has not yet signalled that the Job is finished, is:

#!/bin/sh
#
# The Input for GdfidL shall contain a Specification
# for Restartfiles. In this Example, we do that
# via creating the ’./gdfidl.solver-profile’, which is
# read and interpreted at the Start of Run.
(cat > ./gdfidl.solver-profile) << UntilThisMarker
-general
# Write a Set of Restartfiles every 60 Minutes.
restartfiles= /Data/UserName/restartfiles # Where to write the Restartfiles
tlrestart= 60 # When to write the first Set of Restartfiles
dtrestart= 60 # Wall Clock Time Difference between writing Restartfiles
stopafterrestart= 2 # Stop after writing the second Set of Restartfiles.
UntilThisMarker
#
# The initial Run.
# Use ’>’ instead of ’| tee Logfile’ to get the Returncode of GdfidL.
# If ’tee’ is used the Returncode would be the Returncode of ’tee’.
gdl -DWhateverYourOptions=... \
< Inputfile > Logfile-restart
RETURNCODE=$7
echo RC ist $RETURNCODE
#
# While GdfidL signals that a Restart is useful, restart.
while [ "$RETURNCODE" -eq "1" ]
do
gdl -restartfiles=/Data/UserName/restartfiles.iMod-2 \
>> Logfile-restart
RETURNCODE=$7
echo RC ist $RETURNCODE
if [ "$RETURNCODE" -eq "O" 1; then
exit O
fi
done
#
exit O

2This was implemented for some User who uses this Facility to use a Queue for short running Jobs for his long
running Jobs. He puts a Computation which will run for eg 10 Hours into a Queue where Jobs are killed after
running for more than 1 Hour. He instructs GdfidL to write these Restartfiles and stop after writing them. After
a Job was run for less than 1 Hour, a Script inspects the Logfiles, and if the Computation needs to continue, the
next Job is put into the short-Runner Queue, which uses the previously written Restartfiles to continue the Job.
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Writing Restartfiles is useful anyway. If Restartfiles are written, one has the Chance to restart a
crashed Computation which crashed because of some Failure of the Computersystem. To restart
a Computation, the Restartfiles must be accessible, of course. So the Restartfiles should not be
written to /tmp, or some other Filesystem which might be cleaned at System Boot Time or so.

When writing Restartfiles for the Possibility of recovering from some Failure of the System,
you would not specify

-general, stopafterrestart= 2

The writing of the Restartfiles takes some Time, Minutes or so. So the '~general, dtrestart= XX’
Parameter should be significantly larger than '1’. We suggest '~general, dtrestart= 24x*60’.
That says: Write Restartfiles once per 24 Hours.

If such a Computation crashed, inspect the Logfile. You shall find Lines similar to:

W

# Restartfiles are to be written.

HHHHHH R R R R R R R R R R R R R R R R R R R R
# A Set of Restartfiles has been written.

# To restart this Computation, start with the same Command,

# on the same Computer System, but with the additional Parameter

# -restartfiles=/Data/UserName/restartfiles.iMod-1

HHHHHH R R R R R R R R R R R R R R R R R R R R

This 'start with the same Command, on the same Computer System,’isfor Safety. A Restart
will work as long as the same Executables are used, the same PVM/MPI-Parameters are used,
and the Restartfiles are accessible from every used Node.
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1.4.3 -mesh : Outer Boundary Conditions, Spacings

gd1 needs to know

e where the Boundaries of the computational Volume shall be

e what the default Spacing between Mesh-Planes shall be,

e what the Boundary Conditions at the outer Planes of the computational Volume shall be.
You specify these Values in this Section.

B R S S S s S s R

# Flags: nomenu, noprompt, nomessage, #
G s s s
# Section -mesh #
A R R R R
## Bounding Box: #
# pxlow = undefined , pylow = undefined , pzlow = undefined #
# pxhigh= undefined , pyhigh= undefined , pzhigh= undefined #
# volume= (undefined, undefined, undefined, undefined, undefined, undefined)#
# __zlowref = undefined #
# __zhighref= undefined

## Boundary Conditions:

# cxlow = electric, cylow = electric, czlow = electric
#  cxhigh= electric, cyhigh= electric, czhigh= electric
## Periodic BC’s for loss-free Eigenvalues:

# xperiodic= no , xphase= undefined

# yperiodic= no , yphase= undefined

# zperiodic= no , zphase= undefined

# fillfrom= (undefined, undefined, undefined)

##HHH

# xspacing= undefined, xminspacing= undefined

# yspacing= undefined, yminspacing= undefined

# zspacing= undefined, zminspacing= undefined

# graded = no

# xgraded= no , ygraded= no , zgraded= no

# xqfgraded= 1.20, xdmaxgraded= undefined

# yqfgraded= 1.20, ydmaxgraded= undefined

# zqfgraded= 1.20, zdmaxgraded= undefined

# perfectmesh= no

# geoscale= 1.0

## Commands: # # # # # # # # # #

H OH OH OH OH OH OH OH OH OH OH OH OH OH OH OHOH HHHEHHE HH

# xfixed(N, X0, X1) -- N fixed Meshplanes between X0 and X1
# yfixed(N, YO, Y1) -- N fixed Meshplanes between YO and Y1
# zfixed(N, Z0, Z1) -- N fixed Meshplanes between Z0 and Z1
HHHHEHHH RS R R R
# listplanes, return, help #

B S R R S s R

14



pxlow, pxhigh, pylow, pyhigh, pzlow, pzhigh, volume

(Plane at XLOW ...) These Values are the Coordinates of the Planes that limit the com-
putational Volume.

These Parameters are mandatory.

As an Alternative to specifying via pxlow etc., you can specify the Volume of your com-
putational Volume as volume= (XL, XH, YL, YH, ZL, ZH).

gd1 ignores all Parts of Items that are specified outside of the Box with these Boundary
Planes.

__zlowref, __zhighref
Special Parameters. If these Parameters are given, the Mesh is generated such that the
Mesh below __zlowref and above __zhighref is translational invariant.

cxlow, cxhigh, cylow, cyhigh, czlow, czhigh
(Condition at XLOW ...) These are the Boundary Conditions at the Boundary Planes of
the computational Volume. Possible Values are electric, magnetic.

xperiodic, yperiodic, zperiodic

Possible Values are yes, no. These Parameters toggle the Application of periodic Bound-
ary Conditions between the lower and upper Boundary Planes in x-, y- or z-Direction.
You can compute with more than one ?periodic= yes. This is only implemented for
Eigenvalue Computations. For Time-Domain Computations, these Parameters should be
set to no.

xphase, yphase, zphase
Specification of the Phase Shift (in Degrees) to enforce between the lower and upper
Boundary Planes, when ?periodic= yes.

spacing

The default Spacing, that gd1 shall use for discretising the computational Volume. In
between fixed Meshplanes, the Gridspacing will be about spacing.

This Parameter is mandatory.

Of Course, specifying a small Spacing will lead to a good Discretisation. Be aware how-
ever, that the Memory Requirement is proportional to 1/(spacing)® and the CPU-time
approximately to 1/(spacing)*.

minspacing

The smallest Mesh-Spacing allowed.

gd1 tries to place Meshplanes approximately homogeneously within the Volume. It is guar-
anteed, that there are Meshplanes at the Boundary Planes of (not transformed) bricks,
and where you enforce them via xfixed, yfixed, zfixed, if the Distance between such
fixed Meshplanes is more than minspacing. Otherwise, one of these fixed Meshplanes is
deleted. The deleted one is the Meshplane with the higher Coordinate Value.

If this Parameter minspacing is not given, gd1 uses the Value of spacing/10 instead.
graded
Possible Values are yes, no.

If graded= yes, the Space between fixed Meshplanes will be filled with a graded Mesh.
The Ratio of adjacent Mesh-Spacing will be approximately the Value given for qfgraded.

The largest Mesh-Spacing will be less or equal dmaxgraded.
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e xgraded, ygraded, zgraded
This is the same as graded, but only that the Grid Planes with x-, y- or z-constant are
considered for Grading.

e (fgraded, dmaxgraded
These are the Parameters that are mentioned above in the Discussion of graded.

e perfectmesh

If specified as yes, the Material Boundaries are approximated as smooth Patches. If speci-
fied as no, the Material Distribution in a Cell is approximated for each Cell as one out of 73
possible Material Distributions. The Meshing and Computation with perfectmesh= no
is somewhat faster and is more thoroughly tested. In both Cases, the Error in computed
Resonant Frequencies is reduced by about a Factor of Ten, as compared to the common
known Approximation with diagonal Fillings. Unfortunately, in some Configurations un-
physical Fields are computed when perfectmesh= yes, so use with Care. The Default is
perfectmesh= no.

e geoscale
Each Coordinate that you specify (each Parameter which has the dimension of a Length)
is multiplied by this Factor. Each Parameter which has the Dimension of 1/Length, is
multiplied by 1/geoscale.

e xfixed, yfixed, zfixed

If nothing else is specified, the Meshgenerator of gd1 fills the computational Volume ho-
mogeneous (if graded= no). It is only guaranteed, that the Borders of (not transformed)
bricks lie on Meshplanes. If you have a Geometry with items other than Bricks you some-
times can improve the Mesh by enforcing Meshplanes with these Commands.
Syntax:

xfixed (NUMBER, LOW, HIGH)

yfixed (NUMBER, LOW, HIGH)

zfixed (NUMBER, LOW, HIGH)

— NUMBER:
The Number of Meshplanes to place in between LOW, HIGH. The total Number of
meshplanes enforced by such a Command is exactly NUMBER. In the Case of xfixed,
the Meshplanes are positioned at Positions x;:

HIGH — L
¢ AL i=1,(1), NUMBER

= L 1
i OW = ) A NUMBER = 1)

— LOW, HIGH:
The first and last Coordinate of the Meshplanes to be enforced.

It is possible to specify NUMBER < 0, in this Case nothing happens.
It is possible to specify NUMBER = 1, in this Case a single Meshplane at LOW is enforced.
It is not necessary that LOW is really lower than HIGH.

It is normally counterproductive to specify Regions of fixed Meshplanes. Better only specify
selected Meshplanes, eg xfixed(2, X0, X1), or xfixed(1, X0, X0). Let the Solver compute
on an as homogeneous Mesh as possible.
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e listplanes
Lists the Position of Gridplanes that will be used by gd1.
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Example

-mesh
spacing= le-3
pxlow= le-2, pxhigh= 0O
pylow= 2e-2, pyhigh=
pzlow= 3e-2, pzhigh= 0O

o

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
zperiodic= yes, zphase=

120
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1.4.4 -material : electric / magnetic Properties

This Section is about specifying the Material Parameters. Materials may be perfect electric con-
ducting (type= electric), perfect magnetic conducting (type= magnetic), electric conducting
with Impedance Boundary Conditions applied (type= impedance) (type= coating), or may be
loss-free or lossy Dielectrics with anisotropic Values for p and € (type= normal). Dielectrics
may have up to 10 LORENTZ-Resonances in their permittivity and permeability Functions.

HUFHH AR R S

# Flags: nomenu, noprompt, nomessage, #
B
# section -material #

HERFHHBHHHBHHH B H B H B RAH R R H R H R R R H BB RAFH ARG RS H AR

# material= 3, type= undefined #
# ckappa= undefined , cthickness= undefined #
# epsr = undefined kappa = undefined #
# xepsr= undefined xkappa = undefined #
# yepsr= undefined ykappa = undefined #
# zepsr= undefined zkappa = undefined #
# muer = undefined mkappa = 0.0 #
# xmuer= undefined xmkappa= 0.0 #
# ymuer= undefined ymkappa= 0.0 #
# zmuer= undefined zmkappa= 0.0 #
# # Dispersion Parameters. #
# feps(1) = undefined fmue(1) = undefined #
# xfeps(1)= undefined xfmue (1)= undefined #
# yfeps(1)= undefined yfmue (1)= undefined #
# zfeps(1)= undefined zfmue (1)= undefined #
# aeps(1) = undefined amue(l) = undefined #
# xaeps(1)= undefined xamue (1)= undefined #
# yaeps(1)= undefined yamue (1)= undefined #
# zaeps (1)= undefined zamue (1)= undefined #
# fegm(1) = undefined fmgm(1) = undefined #
# xfegm(1)= undefined xfmgm(1)= undefined #
# yfegm(1)= undefined yfmgm(1)= undefined #
# zfegm(1)= undefined zfmgm(1)= undefined #

HUFHH A R R

# flow = wundefined -- Plot feps(f) & fmue(f) from this f #
# fhigh = undefined -— upto this f. #
# thickness= 100.0 assuming this Thickness. #
# xlog= no -- f-Axis logarithmic. #

B L L L R R L R L L L R R L I B R R R R IR BRI R R ST
2dplotopts= -geometry 690x560+10+10

linecolor= 0 -- 0: foreground, 3: yellow
foreground= black -- black, white

background= white -- blue, white, black
showtext = yes -- (yes | no)
onlyplotfiles= no -- (yes | no)
g g

#
#
#
#
#
#

H OH H H HH
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# return, showfeps, help #
G s T S

e material
The Material Index of the Material whose Parameters are to be changed. This Number
must be between 0 and 250 inclusive.

e type
The Type of the Material. Possible Values are "electric”, "magnetic”, ”impedance”,
"coating”, "normal”. An "electric” Material is treated as perfect electric conducting
for the Field Computation and a "magnetic” Material is treated as perfect magnetic con-
ducting in the Field Computation. At ”impedance” or "coating” Materials, Impedance
Boundary Conditions are applied when performing a Time Domain Computation.

— For Eigenvalue Computations: Materials with type= impedance are treated as per-
fectly conducting.

* When the Parameter 1lossy= no in the Section -eigenvalues is selected, only the
"epsr” and "muer” of a "normal” Material are used for the Field Computation,
ie. no Losses, and no dispersive Parameters are modeled for Eigenvalue Computa-
tions. The Parameters "kappa” and "mkappa” of Materials with ”type= normal”
may be used by the Postprocessor, gd1.pp, to compute dielectric Losses via a
perturbation Formula.

* When the Parameter lossy= yes in the Section -eigenvalues is selected, Losses
due to finite electric and magnetic Conductivities, and the dispersive Parame-
ters of Materials with type= normal are taken into Account. Materials with
type= impedance are treated as perfectly conducting.

— For Time Domain Computations, "epsr”, "muer”, "kappa” and "mkappa’ as well
as the dispersive Parameters of a "type= normal” Material are used for the Field
Computation.

At Material-Boundaries to Materials with type= impedance or type= coating Impedance-
Boundary-Conditions are applied.

— Both for Time Domain and for Eigenvalue Computations, Materials with
"type= electric” are considered perfectly conducting, and Materials with
"type= magnetic” are considered perfectly magnetic conducting. Any specified elec-
tric Conductivities for Materials with "type= electric” or "type= impedance” are
used in the Postprocessor, gd1.pp, to compute Wall Losses via a perturbation For-
mula.

e bkappa
Only used for Materials with "type= coating”’. The Conductivity of the Background-
Material.

e cthickness
Only used for Materials with "type= coating”. The Thickness of the Coating. The used
Scheme assumes a Conctivity of kappa in a Thickness of cthickness, then a Conductivity
of bkappa.
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epsr

Only used for Materials with ”"type= normal”. The relative Permittivity of the Material.
If you specify eg. epsr= 3, all three epsr Values xepsr, yepsr and zepsr are set to the
Value 3.

Xepsr, yepsr, zZepsr
The x-, y-, z-Value of an anisotropic Material. Only diagonal epsr Matrices can be speci-
fied.

muer

Only used for Materials with ”"type= normal”. The relative Permeability of the Material.
If you specify eg. muer= 4, all three muer Values xmuer, ymuer and zmuer are set to the
Value 4.

Xmuer, ymuer, zmuer
The x-, y-, z-Value of an anisotropic Material. Only diagonal muer Matrices can be speci-
fied.

kappa
The electric Conductivity of the Material in MHO/m (1/Ohm/m). If you specify eg.
kappa= 5, all three kappa Values xkappa, ykappa and zkappa are set to the Value 5.

xkappa, ykappa, zkappa
The x-, y-, z-Value of an anisotropic Material. Only diagonal kappa Matrices can be
specified.

mkappa
The magnetic Conductivity of the Material in Ohm/m. If you specify eg. mkappa= 6, all
three kappa Values xmkappa, ymkappa and zmkappa are set to the Value 6.

xmkappa, ymkappa, zmkappa
The x-, y-, z-Value of an anisotropic Material. Only diagonal mkappa Matrices can be
specified.

feps(I)
The I.th LORENTZ-Frequency of a dispersive Material. If you specify eg. feps(1)= 3e9,
all three feps(1) Values xfeps(1), yfeps(1) and zfeps(1) are set to the Value 3 GHz.

xfeps(I), yfeps(I), zfeps(I)
The x-, y-, z-Value of an anisotropic Material.

aeps(I)
The I.th e-Amplitude of a dispersive Material.

fegm(I)
The I.th ~.-Value of a dispersive Material.

fmue(I), amue(I), fmgm(I)

The corresponding resonant Frequency, Amplitude and ~,, Values for a Material with
LORENTZ-Resonance in the Permeability.
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e flow, fhigh, thickness, showfeps

The Command showfeps creates Plots of the frequency dependend Materialparameters

and of the analytical Reflection Sy, = ggg Eiﬁﬁggggég:gﬁ in the Frequency-Range between

flow and fhigh, assuming a Length L=Thickness. Here: beta(f) = jwy/e(f)u(f),
Z(f) = Je()/u(f)

Frequency dependent Materialparameters are taken into account by directly simulating the Dy-
namics of the Electron Hull of Molecules. For each Fieldcomponent in a dispersive Material with
N Poles, the Equations of Motion (v Velocity, @) Charge, k Spring-constant, R Damping Term,
m Mass of the electron Hull) are solved

d Q k R
—V; = —E — —X; — —U;
dt m m m
4. _

dtxz = Y

d

E 1V><H 1%@
- = = - iVi
dt € €

The Parameters () Charge, k Spring-constant, R Damping Term, m Mass of the electron Hull,
are computed from the User-Specified Values epsr, aeps(n), feps(n), fegm(n).

The Permittivity for an N.th Order LORENTZ Medium with resonant Frequencies w, and
damping Frequencies 7, reads

N A, w?

2 2
n=1 W T )WY — W

(1.1)

e (W) = €00 + %4

Such a Permittivity is described with the Parameters

epsr = €0 (1.2)
aeps(n) = A, (1.3)
feps(n) = wn% (1.4)
fegn(n) = 7, (1.5)

Three Materials are predefined:
e Material '0’ is a dielectric, whose default Values of epsr and muer are 1. This is Vacuum.

e Material "1’ is treated as a perfect electric Material for the Field Computations. You can
change its kappa Values, but this only effects the Wall-Loss Computations of gd1.pp.

e Material '2’ is treated as a perfect magnetic conducting Material.
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While a Time Domain Computation with type= impedance Materials is performed, every
500 Timesteps the absorbed Energy in that Materials is written to GdfidL’s stdout. For a
Computation with four such Materials (3,5,6,8) that Output is similar to

1.61138828e-9 1.53411444e-9 <= Time [s], IntegratedSumPowerAll [J]

1.61138828e-9  303.51498474e-12 <= Time [s], IntegratedSumPowerMat003 [J]
1.61138828e-9 4.27840722e-12 <= Time [s], IntegratedSumPowerMat005 [J]
1.61138828e-9 15.01830736e-12 <= Time [s], IntegratedSumPowerMat006 [J]
1.61138828e-9 1.21130274e-9 <= Time [s], IntegratedSumPowerMat008 [J]

The Format is such that one can grep for IntegratedSumPowerMatXXX and create without
much Hassle a Datafile for further Inspection.

Example

The following specifies that the Material with Number 3 shall be treated as a perfect magnetic
conducting Material, the Material with Number 4 shall be a lossy Dielectric.

-material
material= 3
type= magnetic
material= 4
type= normal, epsr= 3, kappa= 1, muer= 1

Example

The following specifies that the Material with Index 10 shall be treated as a dispersive
Dielectric with one LORENTZ Resonance. The frequency Dependence of the p and the S11 of a
1/10 of a Metre thick Slab of such a Material shall be plotted.

-material
# Dispersive Materials and Losses.
material= 10, type= normal
define(MUR, 1.36)
muer= MUR, epsr= 12, kappa= le-6, mkappa=0
fmue(1)= 0.61e9, amue(1)= 460/MUR/MUR, fmgm(1)= 116e9
flow= 0.1e9, fhigh= 10e9, thickness= 0.1, xlog= yes,
showfeps # Show the resulting fEps & fMue

To compute the Time Domain Field with dispersive Materials:
gdl < /usr/local/gdl/examples-from-the-manual/dispersiveMue-TEM.gdf | tee logfile

We get three Plots. Figure 1.1 shows the real Part, figure 1.2 shows the imaginary Part of the
frequency dependent Muer(f). Figure 1.3 shows the Reflection that a Slab of finite Thickness
L=0.1 Metres of such a Material gives for a perpendicular incident TEM-wave. The numerically
computed Reflection of a such a Slab is given in Figure 1.4.
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‘Wed Sep 29 18:18:37 2021

GdfidL, Dispersive fMue of Material 10

Re(fMue)(f)

18.87 . .
muer= 1.360, epsr= 12, kappa= le—6, mkappa=0
fmue(1)=0.61€9, amue(1)= 460/1.360/1.360, fmgm(1)= 116e9

Re(fMue)

I I
1.0x108 1.0x10° 1.0x10'° 1.0x10"!

Frequency [Hz]

Figure 1.1: The real Part of the frequency dependent Muer(f).

‘Wed Sep 29 18:18:37 2021

GdfidL, Dispersive fMue of Material 10

—Im(fMue)(f)

89.28 T T T T
J\ muer= 1.360, epsr= 12, kappa= le—6, mkappa=0

80 \fmue(1)=0.61€9, amue(1)= 460/1.360/1.360, fmgm(1)= 116e9 3

—Im(fMue)

I I
1.0x108 1.0x10° 1.0x10'° 1.0x10"!

Frequency [Hz]

Figure 1.2: The imaginary Part of the frequency dependent Muer(f).
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Wed Sep 29 18:18:37 2021
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Figure 1.3: The analytical Reflection from a finite Slab of dispersive Material.
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Figure 1.4: The numerical Reflection from a Slab of finite Thickness.
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Example

The following specifies that the Material with Index 3 shall be treated as a dispersive Dielec-
tric with four LORENTZ Resonances. The frequency Dependence of the epsr and the S11 of a
0.1 Metres thick Slab of such a Material shall be plotted.

-material
# Dispersive Materials and Losses.
# To have Re(epsr) about 10 and Im(epsr) about 1 in 10-40GHz:
define (EPSQ, 10**2)
material= 3, type= normal, epsr= 10, muer= 1, kappa= 1

kappa= 0

define(i, 0)

define(i, i+1) feps(i)= 10e9, aeps(i)= 1.1/EPSQ, fegm(i)= 100e9
define(i, i+1) feps(i)= 20e9, aeps(i)= 0.42/EPSQ, fegm(i)= 100e9
define(i, i+1) feps(i)= 30e9, aeps(i)= 0.26/EPSQ, fegm(i)= 100e9
define(i, i+1) feps(i)= 40e9, aeps(i)= 0.28/EPSQ, fegm(i)= 100e9

flow= 1e9, fhigh= 70e9, showfeps
To compute the Time Domain Field with dispersive Materials:
gdl < /usr/local/gdl/examples-from-the-manual/dispersiveEps-TEM.gdf | tee logfile

We get three Plots. Figure 1.5 shows the real Part, figure 1.6 shows the imaginary Part of the
frequency dependent epsr(f). Figure 1.7 shows the Reflection that a 0.1 Metres thick Slab of such
a Material would produce for a perpendicular incident TEM-wave. The numerically computed
Reflection of a thick Slab of such a Material is given in Figure 1.8.
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Figure 1.5: The real Part of the frequency dependent epsr.
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Figure 1.6: The imaginary Part of the frequency dependent epsr.
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Figure 1.7: The analytical Reflection from a finite Slab of dispersive Material.
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Figure 1.8: The numerical Reflection from a Slab of finite Thickness.
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Example

The following specifies that the Material with Index 10 shall be treated as a dispersive
Dielectric with two LORENTZ Resonances. The frequency Dependence of the muer and the S11
of a 20 mm Slab of such a Material shall be plotted.

-material
# Dispersive Materials and Losses.
material= 10, type= normal
define (MUR, 1.36)
muer= MUR, epsr= 1, kappa= 0, mkappa=0

fmue(1)= 1e9, amue(1)= 200/MUR/MUR, fmgm(1)= 800.0e9
fmue(2)= 2e9, amue(2)= 30/MUR/MUR, fmgm(2)= 80.0e9
flow= 1le6, fhigh= 1400e6, xlog= yes, showfeps # Show the resulting fEps, fMue

To compute the Time Domain Field with dispersive Materials:
gdl < /usr/local/gdl/examples-from-the-manual/dispersiveMue2-TEM.gdf | tee logfile

We get three Plots. Figure 1.9 shows the real Part, figure 1.10 shows the imaginary Part of the
frequency dependent Muer(f). Figure 1.11 shows the Reflection that a Slab of such a Material

would produce for a perpendicular incident TEM-wave. The numerically computed Reflection
of a 20 mm Slab of such a Material is given in Figure 1.12.
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Figure 1.9: The real Part of the frequency dependent Muer.
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Figure 1.10: The imaginary Part of the frequency dependent Muer.
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Figure 1.11: The analytical Reflection from a Slab of dispersive Material.
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Figure 1.12: The numerical Reflection from a Slab of dispersive Material.
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1.4.5 -lgeometry : Load a previously used Geometry

This Section enables the Loading of the Grid and Material Filling of a previous Computation to
be used for the current Computation.

S

# Flags: nomenu, noprompt, nomessage, #
A R R R
# Section: -lgeometry #

HHHHEHHH RS R R R
# infile = -none- #
# xmirror= none -- [none,low,high] #
# ymirror= none - [none,low,high] #
# #
# #
HHSHEHHH RS R R
# 7, doit, return, end, help #
HHHHHHHH S HHH SRS HH R SHHH T HH R T H  HHH S T T

e infile= NAME_OF_A_RESULTFILE:
The Name of the outfile of a previous Computation.

e xmirror= [none, low, high]:
If xmirror= low , the Grid and the geometric Items are mirrored on the lower x-Plane.
If xmirror= high , the Grid and the geometric Items are mirrored on the higher x-Plane.
This allows the loading of a magnetostatic or resonant Field computed with using Planes
of Symmetry to be loaded for a Particle in Cell Computation where, for most Cases, no
Planes of Symmetry can be used.

e ymirror= [none, low, high]:
e doit:

— The Shapes,

— the Coordinates of the Meshplanes,

— the Materialparameters,

— the Coordinates of the Borders of the computational Volume

— and the Boundary Conditions

are read from the ’infile’.

If you load a Geometry via -1geometry, all previous defined Geometric items are lost. You
should only redefine Material Parameters after loading a Grid via -1geometry.

32



1.5 Geometric Primitives

1.5.1 -brick: A rectangular Brick

A Brick is a rectangular Box, with its Edges parallel to the cartesian Coordinate Axes. If you
need to model a Brick with Edges in other Directions, you can use the -rotate Section to rotate
the Brick in any Direction.

HUHH A S R R

# Flags: nomenu, noprompt, nomessage, #
G
# section -brick #

HERFHHBHHHBHHH B H BB RAH R R H R H R R R AR H BB H RS R RGBSR R R

# material= 1, sloppy= no #
# whichcells= all, taboo= none #
# show= off -- [off|now|later|all] #
# name= brick-000000000 #
# xlow = undefined , Ylow = undefined , zlow = undefined #
# xhigh= undefined , yhigh= undefined , zhigh= undefined #
###H#H #
# volume= (undefined, undefined, undefined, undefined, undefined, undefined) #

HHHH S S S S S R S S S
# doit, return, help #
HHHH S S S S S S

e material
The Material Index that shall be assigned to the Volume that makes up the Brick.

e sloppy
Possible Values are yes, no. If no, Meshplanes are enforced at the Borderplanes of the

Brick. For a Brick which is rotated, sloppy=no might give unexpected Results.

e whichcells
Possible Values are all, or a Material-Index. If whichcells= all, all Volume inside
the Brick is assigned the Material-Index, provided the former Material is not taboo. If
whichcells is a Material-Index, only the Parts of the Brick that are currently filled with
the given Index are assigned the new Material-Index.

e taboo
Possible Values are none, or a Material-Index. If taboo= all, all Volume inside the brick
is assigned the Material-Index. If taboo is a Material-Index, only the parts of the brick
that are currently filled with another Index than the given Index are assigned the new
Material-Index.

e show
Flag, specifying whether an Outline of the specified Brick shall be displayed.
If show=off, no Outline will be displayed.
If show=1ater, the Outline of the Brick will be shown later, together with Outlines of other
specified Items. If show=all is present, the Outlines of all other specified Items bricks
gccylinders, ggecylinders and gbors found in the Inputstream so far where show was not
off will be displayed.
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e xlow, xhigh, ylow, yhigh, zlow, zhigh, volume
The Coordinates of the bounding Planes of the Brick. As an Alternative to specifying via
xlow.., you can specify the Volume of the brick as
volume= (XL, XH, YL, YH, ZL, ZH).

e doit
Puts the current Data into the Meshing Database.

Example

# /usr/local/gdl/examples-from-the-manual/brick-example.gdf
-general

outfile= /tmp/UserName/example

scratch= /tmp/UserName/scratch

-mesh
pxlow= -le-2, pxhigh= 3e-2
pylow= -le-2, pyhigh= 2e-2
pzlow= -0.1le-2, pzhigh= 2e-2

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= ele, czhigh= mag

spacing= le-3

-brick
material= 1, sloppy= no
xlow= 0, xhigh= 1.1le-2
ylow= 0, yhigh= 1.5e-2
zlow= 0, zhigh= 0.8e-2
doit

—-transform,
-translate, offset= ( 1.5e-2, 0, 0 ), doit
-rotate, axis= ( 1, 0, 0 ), angle= -45, doit
-brick, material= 3, sloppy= yes, doit

-volumeplot

scale= 3
doit
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xext: ( —1.000E-02, 3.000E-02) 29/09/2021, 18:03:03

yext: ( —1.000E-02, 2.000E—02) GdfidL
zext: ( —1.000E-03, 2.000E-02) v3.8 Wed Sep 29 2021 wb043

Material Boundaries

Figure 1.13: A simple Brick, and the same Brick-Data translated and rotated.
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1.5.2 -gccylinder: A circular Cylinder in general Direction

A gcceylinder is a circular Cylinder, with its Axis in some arbitrary Direction.

R
# Flags: nomenu, noprompt, nomessage, #
HHFHRH R R
# section -gccylinder #
HHFHRH R R
# material = 1

# whichcells= all, taboo= none
# show= off -- [off|now|later|all]
# name= gccyl-000000000
# radius = undefined

# length = undefined

# origin = ( undefined, undefined, undefined )
# direction = ( undefined, undefined, undefined )
HHFHEH R H AR R
# doit, return, help #
R

H O H OH OH OH OH R

e material
The Material Index, that shall be assigned to the Volume, which makes up the gccylinder.

e whichcells
Possible Values are all, or a Material-Index. If whichcells=all, all Volume inside the
cylinder is assigned the Material-Index, provided the former Material is not taboo. If
whichcells is a Material-Index, only the Parts of the Cylinder that are currently filled
with the given Index are assigned the new Material-Index.

e taboo
Possible Values are none, or a Material-Index. If taboo=none, all Volume inside the Cylin-
der is assigned the Material-Index. If taboo is a Material-Index, only the Parts of the
cylinder that are currently filled with another Index than the given taboo-Index are as-
signed the new Material-Index.

e show
Flag, specifying whether an Outline of the specified gceylinder shall be displayed.
If show=off, no Outline will be displayed.
If show=later, the Outline of the gccylinder will be shown later, together with Outlines
of other specified Items. If show=all is present, the Outlines of all other specified Items
bricks gccylinders, ggeylinders and gbors found in the Inputstream so far where show
was not off will be displayed.

e radius
The Radius of the circular Cylinder.

e length
The Length of the Cylinder.
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e origin
The Coordinates of the Center of the Foot-Circle of the circular Cylinder.

e direction
The Direction of the Cylinder’s Axis.

e doit
Puts the current Data as the data of a circular Cylinder into the Meshing Database.

You can revert the Direction of the Cylinder by negating the direction, or (easier) by negating
the length.

If you want eg. a Quarter of a circular Cylinder, you have to use -gbor, see Pages 58 ff.

Example

# /usr/local/gdl/examples-from-the-manual/gccylinder-example.gdf

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch-

-mesh
pxlow= O, pxhigh= le-2
pylow= O, pyhigh= 2e-2
pzlow= 0, pzhigh= 1.5e-2

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= ele, czhigh= mag

spacing= 0.2e-3

-gccylinder
material= 5, radius= 3e-3, length= 7e-3
origin= ( 0.5e-2, 0.3e-2, 0.6e-2 )
direction= ( -0.4, 1.5, 0.4 )
doit

-volumeplot

scale= 3
doit
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xext: ( 0.000E+00,

1.000E-02)

yext: ( 0.000E+00, 2.000E-02)

zext: ( 0.000E+00,

1.500E-02)

GdfidL

Material Boundaries

29/09/2021, 18:03:43
v3.8 Wed Sep 29 2021 wb043

Figure 1.14: A simple gceylinder, with its Axis directing towards (-0.4, 1.5, 0.4).
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Example

# /usr/local/gdl/examples-from-the-manual/gccylinder-example2.gdf
define(VeryLarge, 10000)

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch

text()= A Chain of circular Cylinders
text ()= The Cylinders are partly outside of the bounding Box.

-mesh
pxlow= -0.8, pxhigh= 10
pylow= -2, pyhigh= 2
pzlow= -0, pzhigh= 1.8

spacing= 8e-2

-brick
material= 0
volume= ( -VerylLarge, VerylLarge, \
-VeryLarge, VeryLarge, \
-VeryLarge, VeryLarge )
doit

define(RADIUS, 0.6)
-gccylinder
length= 1.7
radius= RADIUS
do jj=0, 9, 1
material= jj+3
origin= ( jj*1.5%RADIUS, 0, 0 )
define(PHI, jj*22.5%@pi/180 )
direction= ( 0, cos(PHI), sin(PHI) )
doit
end do

-volumeplot
eyeposition= ( 1.0, 2.30, 2 )
scale= 5
doit
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xext: ( —8.000E-01, 1.000E+01) 29/09/2021, 18:04:28

yext: ( —2.000E+00, 2.000E+00) Gdfidl—

zext: ( 0.000E+00, 1.800E+00) v3.8 Wed Sep,29 2021 wb043

Material Boundaries

A Chain of ‘dircutar Cylinders
The Cylinders are partly outside of the bounding Box.

Figure 1.15: A Chain of simple circular Cylinders. Each Cylinder has its Axis pointing in a
different Direction.
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1.5.3 -ggcylinder: A general Cylinder in general Direction

A ggcylinder is a general Cylinder with a Footprint (Cross-Section) described as a general
Polygon. This Footprint is swept along an Axis in a general Direction, additionally, this Footprint
can shrink or expand along this Axis, additionally, this Footprint can be rotated along the Axis,
additionally, only Parts of the ggcylinder that fulfill some additional Condition will be filled.

I S R S R AR R R R R R
# Flags: nomenu, noprompt, nomessage, #
B L L e L R R L R L L L R R L I B R e R R IR BRI R R ST
# section -ggcylinder #
T L L s s
material = 1
whichcells all, taboo= none
show off -- (off | all | later | now)
name ggcy1l-000000000
fixpoints= no -- (yes|no)
inside = yes -- (yes|no)
originprime = (
xprimedirection= (
yprimedirection= (
zprimedirection= ( 0.0, 0.0,
usezprimedirection= no -- (yes|no)
range = ( undefined, undefined )
pitch =
xexpgrowth
yexpgrowth
xslope
yslope
xscaleprime=
yscaleprime= 1.0
zxscaletablefile= -none-
zyscaletablefile= -none-
deltaphi= 4.0 —-- Arc and Ellipse Resolution [Degs] #
B L L e L R R L R L L L R R L I B R e R R IR BRI R R ST
## Syntax:
# point= (Xi, Yi)
# arc, radius= RADIUS, type= [clockwise counterclockwise]
# size= [small | large ]
# deltaphi= b
#
#

0.0, O.
1.0, O.
0.0, 1
0

) .

0, O
0, O.
0, O
0

-- [Degs/m]

-- (x2/x1-1)/len [1/m]
-- (y2/y1-1)/1len [1/m]

Il
_ O O O O O
A
HOH O H OH H OH OH OH HH HHHHEHHEHHEH

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

ellipse, center= (X0, Y0), size= [small | large ]
deltaphi= b

HitH S S

# doit, return, help, list, reset, clear #

A A A A A

H OH H OH H H H

e material=MAT:
The Material Index that shall be assigned to the Volume.
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whichcells

Possible Values are all, or a Material-Index.

If whichcells=all, all Volume inside the ggcylinder is assigned the Material-Index,
provided the former Material is not taboo. If whichcells is a Material-Index, only the
Parts of the ggcylinder that are currently filled with the given Index are assigned the
new Material-Index.

taboo

Possible Values are none, or a Material-Index.

If taboo=none, all Volume inside the ggcylinder is assigned the Material-Index. If taboo
is a Material-Index, only the Parts of the ggcylinder that are currently filled with another
Index than the given Index are assigned the new Material-Index.

originprime:
The Coordinates of the Origin of the ggcylinder.

xprimedirection:
The Direction of the x’-Axis of the Polygon that describes the Footprint.

yprimedirection:
The Direction of the y’-Axis of the Polygon that describes the Footprint. The y’-Direction
will internally be enforced to be perpendicular to the x’-Direction.

usezprimedirection= [yes|no]:

If usezprimedirection= yes, the Axis of the Cylinder is not computed from the Cross
Product of xprimedirection and yprimedirection, but is taken to be the Direction given by
zprimedirection= ( XZ, YZ, ZZ ).

zprimedirection= ( XZ, YZ, ZZ ):

If usezprimedirection= yes, the Axis of the Cylinder has the Direction given by
zprimedirection= ( XZ, YZ, ZZ ). If usezprimedirection= no, the given Values are
not used and the Direction is given by the Cross Product of

xprimedirection and yprimedirection.

range:
Start and End Values of the z’-Coordinate of the Cylinder in the Coordinate System of
xprimedirection,yprimedirection, (xprime X yprime), relative to originprime.

pitch:
Phase Shift in Degrees/m. The Footprint will be rotated along the Axis.

xexpgrowth, yexpgrowth
Alpha of the exponential Growth of the x-Coordinates, resp. y-Coordinates of the Footprint
along the Axis in 1/m.

xslope, yslope:
Factor of the linear Growth of the x’-Coordinates, resp. y’-Coordinates of the Footprint
along the Axis in 1/m.

xscaleprime, yscaleprime:
The x’-Coordinates, resp. y’-Coordinates of the Footprint are multiplied by these Factors.
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zxscaletablefile, zyscaletablefile:

The x’-Coordinates, resp. y’-Coordinates of the Footprint are multiplied by these Fac-
tors. The Factors are given as Tables in external Files. The Format is: first Column
z-Coordinate, second Column the Scaling.

inside:
Flag, specifying whether the Inside of the ggcylinder shall be assigned Material Index
MAT, or whether the Volume outside of it shall be changed.

show:

Flag, specifying whether an Outline of the specified ggcylinder shall be displayed.

If show=off, no Outline will be displayed.

If show=1later, the Outline of the ggcylinder will be shown later, together with Outlines
of other specified Items. If show=all is present, the Outlines of all other specified Items
bricks gccylinders, ggcylinders and gbors found in the Inputstream so far where show
was not off will be displayed.

fixpoints
Ensure Meshplanes at the Points of the Footprint, both at the Beginning and the End of
the Extrusion Range. This is seldom useful.

point= (XI, YI):

XI, YI are the Coordinates of the i.th Point in the Polygon that describes the Footprint of
the ggcylinder. There have to be minimum 3 Points, or 2 Points and an Arc or 2 Points
and an Ellipse.

arc:
(optional):

Indication, that there shall be a circular Arc from the Point that was specified before, to
the Point that will be specified as the next Point.

In Order to determine the Arc between two Points, three Parameters are necessary: The
Radius of the Arc, whether the Connection is Clockwise or Counterclockwise, and whether
the Connection shall take the large Path or the small Path.

— radius= RADIUS:
The Points are to be connected by an Arc with Radius=RADIUS

— size= [small | large] (optional):
Indication, whether the Connection between the two Points shall be on the smaller
or the larger Side of the Arc.

— type= [clockwise | counterclockwise]:
Indication, whether the Connection between the two Points shall proceed Clockwise
or Counterclockwise along the Arc.

— deltaphi:
The wanted Resolution of the Arc or Ellipse in Degrees. A circular Arc or a Part of
an Ellipse is internally discretised as a Polygon. The deltaphi Parameter controls the
Resolution of that Discretisation.
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® clear:
Clears the current Polygon Path.

e doit:
Puts the current Data as the Data of a general Cylinder into the meshing Database.

Example

The following decribes a Cavity with rounded Corners.

# /usr/local/gdl/examples-from-the-manual/ggcylinder-example.gdf

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch

text ()= We use ’fixpoints= yes’

text ()= to ensure Meshplanes at the Points of the Polygon.
text()=

text ()= We use a graded Mesh.

-mesh
spacing= 100e-6
graded= yes, dmaxgraded= 263.3e-6
pxlow= -be-3, pxhigh= 5e-3
pylow= -4.34e-3, pyhigh= 0O
pzlow= -1.6665e-3, pzhigh= 1.6665e-3

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= ele, czhigh= ele

-ggcylinder

material= 7

originprime= ( 0, 0, 0 )
xprimedirection= ( 1, 0, O
yprimedirection= ( 0, 0, 1
range= ( -4.2e-3, 4.2e-3 )

)
)

clear # Clear the Polygon-List, if any
point= ( -3.3405e-3, -816.5e-6 )
arc, radius= 500.0e-6, type= counterclockwise, size= small
point= ( -2.8405e-3, -1.3165e-3 )
point= ( 2.8405e-3, -1.3165e-3 )
arc
point= ( 3.3405e-3, -816.5e-6 )
point= ( 3.3405e-3, 816.5e-6 )
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Material Boundaries

We use fixpoints= yes’
to ensure Meshplanes at the Points of the Polygon.

We use a graded Mesh.

Figure 1.16: A simple ggcylinder

arc
point= ( 2.8405e-3, 1.3165e-3 )
point= ( -2.8405e-3, 1.3165e-3 )
arc

point= ( -3.3405e-3, 816.5e-6 )

fixpoints= yes # Ensure Mesh-Planes at the Points of the Polygon.

doit
-volumeplot

scale= 4

doit

45




Example

The following decribes a twisted rectangular Waveguide.

# /usr/local/gdl/examples-from-the-manual/ggcylinder-twisted.gdf
define(LargeNumber, 10000)

define (LENGTH, 10e-3)
define (WGW, 2.54e-3 )
define (WGH, WGW/2 )

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch

text ()= A Waveguide-Twist
text ()= Waveguide-Width : WGW
text ()= Waveguide-Height: WGH

-mesh
spacing= WGW/80
pxlow= -1le-3, pxhigh= LENGTH+le-3
pylow= -WGW*x0.6, pyhigh= 0.6*WGW
pzlow= -WGW*x0.6, pzhigh= 0.6*WGW

define(EL, 10)
-material, material= EL, type= electric
-brick
#
# Fill the Universe with Metal:
#
material= EL
volume= ( -LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber )
doit

-ggcylinder

#

# The twisted Waveguide.

# We use a rectangular Footprint,

# and specify a Pitch.

# The Footprint shall rotate by -90 Degrees, over a length of LENGTH.
#
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material= 0

originprime= ( 0, 0, 0 )
xprimedirection= ( 0, 1, 0 )
yprimedirection= ( 0, 0, 1)
range= ( 0, LENGTH )
pitch= -90/LENGTH

clear # Clear the previous Polygon-List, if any.
point= ( -WGW/2, -WGH/2 )

point= ( WGW/2, -WGH/2 )

point= ( WGW/2, WGH/2 )

point= ( -WGW/2, WGH/2 )

doit

-volumeplot
eyeposition= ( 1, 2, 1.3 )
scale= 4.5
doit
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xext: ( —1.000E-03, 1.100E-02)
yext: ( —1.524E—03, 1.524E—03)
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A Waveguide—Twist
Waveguide—Width : 2.54e-3
Waveguide—Height: 1.27e-3
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GdfidL

Material Boundaries

Figure 1.17: A simple ggcylinder, with a Pitch.

48




Example

The following decribes a Transition from a circular Waveguide to an elliptical Waveguide.

# /usr/local/gdl/examples-from-the-manual/ggcylinder-circular-to-elliptic.gdf
define(LargeNumber, 10000)

define (LENGTH, 10e-3)
define (RADIUS1, 2.54e-3 ) define(RADIUS2, 5.0e-3 )
-general

outfile= /tmp/UserName/example

scratch= /tmp/UserName/scratch

text()= A Transition from a circular Waveguide to an elliptical One.
text ()= The Bounding box is specified such,
text ()= that only the Part below the Plane z=0 is discretised.

-mesh
spacing= RADIUS1/20
pxlow= -1le-3, pxhigh= LENGTH+le-3
pylow= -RADIUS2*1.0, pyhigh= RADIUS2x%1.0
pzlow= -RADIUS1*1.1, pzhigh= 0

define(EL, 10)
-material, material= EL, type= electric
-brick
#
# Fill the Universe with Metal:
#
material= EL
volume= ( -LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber )
doit

-ggcylinder
#
# The Waveguide.
# We use a circular Footprint,
# and specify a Slope, different in x- and y
#
material= 0
originprime= ( 0, 0, 0 )
xprimedirection= ( 0, 1, 0 )
yprimedirection= ( 0, 0, 1)
range= ( 0, LENGTH )
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# xlingro 1+(RADIUS2/RADIUS1-1)/LENGTH
xslope= (RADIUS2/RADIUS1-1)/LENGTH
yslope= 0

clear # Clear the previous Polygon-List, if any.
point= ( -RADIUS1, 0 )

arc, radius= RADIUS1, size= large, type= counterclockwise
point= ( RADIUS1, 0 )

arc
point= ( -RADIUS1, 0 )
doit

-volumeplot
eyeposition= ( 2, 1, 1.8 )
scale= 3
doit
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xext: ( —1.000E-03, 1.100E—02)
yext: ( —5.000E—03, 5.000E—03)
zext: ( —2.794E—-03, 0.000E+00)

GdfidL

Material Boundaries

29/09/2021, 18:06:25
v3.8 Wed Sep 29 2021 wb043

A Transition from a circular Waveguide to an elliptical One.

The Bounding box is specified such,
that only the Part below the Plane z=0 is discretised.

Figure 1.18: A simple ggcylinder, with different Growthfactors for x and y.
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Example

The following decribes a elliptical Wedge where the Axis of the ggcylinder is in the z-Direction,
while the Plane Normal of the Wedge is tilted.

# /usr/local/gdl/examples-from-the-manual/ggcylinder-usezprimedirection.gdf

define (INF, 1000)

define (STPSZE, 0.5e-3) # Define the Mesh Step Size, 0.5 mm
#

# Description of the Flange Geometry.

#

define(FlangeGap, 10e-3 ) # Gap of the Flange Joint.
define(FlangeDO, 80e-3) # Diameter of Gasket Seal.

define(Width, FlangeGap/2 ) # 1/2 Width of Flange Gap in z-Axis.
define(FlangeRadius, FlangeD0/2 )

define(AxisA , 70e-3/2 ) # 1/2 *major Diameter of interior Ellipse.
define(AxisB , 32e-3/2 ) # 1/2 *minor Diameter of interior Ellipse.
#-—— Parameters related to a tilted Flange Joint ---

define(ZW, 10e-3) # z-Deviation from the y-Axis.

define(Theta, atan(ZW/FlangeRadius) ) # Angle between y-Axis and y’-Axis.
define(RR, FlangeRadius/cos(Theta) ) # Radius of the tilted Cylinder.
define(LL, Width/cos(Theta) ) # Half Length of tilted Cylinder.

#H#H#
### We enter the Section "-general"
### Here we define the Name of the Database where the
### Results of the Computation shall be written to.
#i# (outfile= )
### We also define what Names shall be used for Scratchfiles.
## (scratchbase= )
#H#
-general

outfile= /tmp/UserName/bla

scratch= /tmp/UserName/scratch-

text ()= Flange Gap= FlangeGap
text ()= Mesh= STPSZE m
text ()= tilt Angle of Flange= eval(Theta*180/@pi) [Degrees]

#H#

### We define the default Mesh-Spacing,

### we define the Borders of the computational Volume.
#H#H#

define(Zmin, -4e-2)
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define(Zmax, 4e-2)

-mesh
spacing= STPSZE
pxlow= -b5e-2, pxhigh= 0O
pylow= -4e-2, pyhigh= 4e-2
pzlow= Zmin, pzhigh= Zmax

HHH##
# Specify that the Material Index ’3’ describes a perfect conducting Material.
-material, material= 3, type= electric

##

## Fill the Universe with Metal.

#it

-brick, material= 3, volume= ( -INF,INF, -INF,INF, -INF,INF ), doit

##
## Step 1: Carve out a tilted circular Box.
##
-ggcylinder # A Parallelogram Gap with a tilt Angle.

material= 0

origin= ( 0, 0, 0 )

xprimedirection= ( 1, 0, 0 )

yprimedirection= (0, cos(Theta), sin(Theta) )
zprimedirection= ( 0, 0, 1 ), usezprimedirection= yes

range= ( -LL, LL )

clear
point= ( -RR, 0 )
arc, radius= RR,type= counterclockwise, size= small
point= ( RR, 0 )
arc, radius= RR,type= counterclockwise, size= smal
point= ( -RR, 0 )
show= later
doit
usezprimedirection= no # Switch back to the Default, ’no’.

##
## Step 2: Creating the interior Footprint of elliptic Beampipe(hollow)
##
-ggcylinder
material= 0
origin= ( 0, 0, 0 )
xprimedirection= ( 1, 0, 0 )
yprimedirection= ( 0, 1, 0 )
range= (Zmin-2*STPSZE, Zmax+STPSZE)
xslope= 0, yslope= 0
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clear # Clear any old Polygon-Description of the Footprint.

# point= (x’, y’)

point= ( 0, -AxisB),
ellipse, center= ( 0, 0 ),

point= ( AxisA, 0 ),
ellipse,

point= ( O, AxisB ),
ellipse,

point= ( -AxisA, 0 ),
ellipse,

point= ( 0, -AxisB ),

# show= all
doit

HEHHHBRAHRRHS

-volumeplot
eyeposition= ( 1, -0.5, 0.5 )
scale= 3
doit

Example

The following decribes a Cosine-Taper. The Cross-Section is specified as a ggcylinder, the
Cross Section is circular. The xscale and yscale are specified via tables.

# /usr/local/gdl/examples-from-the-manual/zxscale-example.gdf

define(R1, 1 )
define(R3, 3 )

define(DR, 0.1*R1)

-general
outfile= /tmp/UserName/bla
scratch= /tmp/UserName/scratch-

-mesh
spacing= R1 / 10
pxlow= -16, pxhigh= 5
pylow = -(R3+DR), pyhigh= R3+DR
pzlow = -(R3+DR), pzhigh= R3+DR

# Compile the program which creates the Table.

system( $FC Two-Cosine-Table.f90 )
# Run the program which creates the table.
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xext: ( —5.000E-02, 0.000E+00)
yext: ( —4.000E-02, 4.000E—02)
zext: ( —4.000E-02, 4.000

29/09/2021, 18:07:10
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Flange Gap= 10.0e—
Mesh= 500.0e—6 m
tilt Angle of Flange= 14.03624329 Degrees

Figure 1.19: A simple ggcylinder, with zprimedirection different from the Footprints Plane
Normal.

25




system( ./a.out > Two+Cosine-Table )

# The source Code looks like:

# Pi= 4%ATAN(1.0)

# z0= 0

# zN= 10

# N= 100

# DO i= 1, N

# z= z0 + (i-1)*(zN-z0) / (N-1)

# WRITE (x,*) z, 2 - COS((z-z0) * Pi/(zN-z0))
# END DO

# END

#

##
## Create the tapered Beampipe.
##

-ggcylinder
material= 3
origin= ( O,
xprime= ( 0,
yprime= ( 0

-

# The x’-Direction.

# The y’-Direction.

# The z’-Direction is then implicitely the
# ( -1, 0, O ) Direction.

# z’ = x’ cross y’

range= ( -3, 14 ) # The Range of the z’-Values.

= O O
O = O
(NN

3

-

# Filenames of the Tables.
zxscale= Two+Cosine-Table
## zyscale= -none-

clear # Clear any old Polygon-Description of the Footprint.
#
# This decribes a circular Footprint.
#
# point= (x’, y’)
point= ( 0, -R1 )
arc, radius= R1l, type= clockwise, size= small
point= ( 0, R1)
arc
point= ( 0, -R1 )
# show= now
doit

-volumeplot, scale= 4, doit
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xext: ( —1.600E+01, 5.000E+00)
yext: ( —3.100E+00, 3.100E+00)
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Figure 1.20: The Discretisation of a Cosine-Taper, specified as a ggcylinder with zxscale.
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1.5.4 -gbor: A general Body of Revolution in general Direction

A gbor is a Body of Revolution with a Cross Section described as a general Polygon. This Cross
Section is swept around some Axis in a general Direction. Moreover, only Volume that fulfills
some additional Condition will be filled.

B R s s s s e s S s R

# Flags: nomenu, noprompt, nomessage, #
R
# section -gbor #
A
# material = 1 #
# whichcells = all, taboo= none #
# show = off -— (off | all | later | now) #
# name = gbor-000000000 #
# inside = yes -- (yes|no) #
# originprime = (0.0, 0.0, 0.0) #
# zprimedirection= ( 0.0, 0.0, 1.0 ) #
# rprimedirection= ( 1.0, 0.0, 0.0 ) #
# range = (0.0, 360.0 ) #
# xscaleprime =1.0 -- Elliptic Coordinates. #
# yscaleprime =1.0 -- Elliptic Coordinates. #
A
## Syntax: #
# point= (Zi, Ri) #
# arc, radius= RADIUS, type= [clockwise counterclockwise] #
# size= [small | large ] #
# deltaphi= 5 #
# ellipse, center= (Z0, RO), size= [small | large ] #
# deltaphi= 5 #
R
# doit, return, help, list, reset, clear #

B S R S S s S T s R

e material= MAT:
The Material Index that shall be assigned to the Volume.

e whichcells
Possible Values are all, or a Material-index.
If whichcells=all, all Volume inside the gbor is assigned the Material-index, provided
the former Material is not taboo. If whichcells is a Material-index, only the Parts of the
gbor that are currently filled with the given Index are assigned the new Material-Index.

e taboo
Possible Values are none, or a Material-index.
If taboo=none, all Volume inside the gbor is assigned the Material-index. If taboo is a
Material-index, only the Parts of the gbor that are currently filled with another Index
than the given Index are assigned the new Material-Index.
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originprime:
The Coordinates of the Origin of the gbor.

zprimedirection:
The Direction of the z’-axis of the gbor.

rprimedirection:
The Direction of the r’-Vector of the Polygon. The r’-Direction will internally be enforced
to be perpendicular to the z’-Direction.

range:
Start and End Values (in Degrees) of the phi-Coordinate of the Body of Revolution.

xscaleprime, yscaleprime:
The x’-Coordinates, resp. y’-Coordinates of the Footprint are multiplied by these Factors.

inside:
Flag, specifying whether the Volume inside the gbor shall be assigned the Material Index
MAT, or whether the Volume outside of it shall be set to the Material Index MAT.

show:

Flag, specifying whether an Outline of the specified ghor shall be displayed.

If show=off, no Outline will be displayed.

If show=1ater, the Outline of the ghor will be shown later, together with Outlines of other
specified Items. If show=all is present, the Outlines of all other specified Items bricks
gccylinders, ggeylinders and gbors found in the Inputstream so far where show was not
off will be displayed.

point= (XI, YI):

XI, YI are the Coordinates of the i.th Point in the Polygon that describes the Polygon of
the gbor. There have to be minimum 3 Points, or 2 Points and an Arc or 2 Points and an
Ellipse.

arc:
(optional):

Indication, that there shall be a circular Arc from the Point that was specified before, to
the Point that will be specified as the next Point.

In Order to determine the Arc between two Points, three Parameters are necessary: The
Radius of the Arc, whether the Connection is Clockwise or Counterclockwise, and whether
the Connection shall take the large Path or the small Path.

— radius= RADIUS:
The Points are to be connected by an Arc with Radius=RADIUS

— size= [small | large] (optional):
Indication, whether the Connection between the two Points shall be on the smaller
or the larger Side of the Arc.

— type= [clockwise | counterclockwise]:
Indication, whether the Connection between the two Points shall proceed Clockwise
or Counterclockwise along the Arc.
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— deltaphi:
The wanted Resolution of the Arc or Ellipse in Degrees. A circular Arc or a Part of
an Ellipse is internally discretised as a Polygon. The deltaphi Parameter controls the
Resolution of that Discretisation.

® clear:
Clears the current Polygon Path.

e doit:
Puts the current Data as the Data of a General Body of Revolution into the meshing

Database.
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Example

The following describes something like a Tuning-Plunger.

# /usr/local/gdl/examples-from-the-manual/plunger0.gdf

define(PlungerInnerRadius, 100e-3/2 )
define(PlungerCurvature, 16e-3 )
define(PlungerAngle, -67.5%@pi/180 )

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch-

text ()= A Plunger, modelled as a body of revolution.

text ()= Curvature : PlungerCurvature

text ()= Radius : PlungerInnerRadius

text ()= Angle of Axis : eval(PlungerAngle * 180 / @pi) Degrees

-mesh
spacing= 0.2e-2
pxlow= -0.12, pxhigh= 0.05
pylow= -0.02, pyhigh= 0.18
pzlow= -6e-2, pzhigh= 6e-2

-gbor
material= 4
originprime= ( 0, 0, 0 )
zprimedirection= ( cos(PlungerAngle), sin(PlungerAngle), 0O )
rprimedirection= ( 0, 0, 1 )
range= ( 0, 360 )

clear
# point= ( z, r )
point= ( 0, 0 )
point= ( O, PlungerInnerRadius-PlungerCurvature )
arc, radius= PlungerCurvature, size= small, type= counterclockwise
point= ( -PlungerCurvature, PlungerInnerRadius )
point= ( -170e-3, PlungerInnerRadius )
point= ( -170e-3, 0 )
# show= now
doit

-volumeplot, eyeposition= ( 1, -0.5, 0.6 )

scale= 3
doit
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xext: ( —1.200E-01, 5.000E—02) 29/09/2021, 18:01:07

yext: ( —2.000E-02, 1.800E-01) Gdfidl—
zext: ( —6.000E-02, 6.000E-02)

v3.8 Wed Sep 29 2021 wb043
at Boundaries

A Plunger, modelled as a body of revo
Curvature : 16.0e-3
Radius : 50.0e-3
Angle of Axis : —67.50000028 Degrees

Figure 1.21: A simple gbor.
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Example

The following discretises the Connection of two circular Waveguides, meeting at an Angle of
90 Degrees

# /usr/local/gdl/examples-from-the-manual/gbor-examplel.gdf
define(LargeNumber, 10000) # some big number

define (MAXCELLS, 1e+5)

define (XLOW, 0) define(XHIGH, 5e-2)
define (YLOW, 0) define(YHIGH, 6e-2)
define(ZLOW, -1.1e-2) define(ZHIGH, 0)

define (STPSZE, ((XHIGH-XLOW)*(YHIGH-YLOW)*(ZHIGH-ZLOW)/MAXCELLS)**(1/3) )

-mesh
volume= ( XLOW, XHIGH, \
YLOW, YHIGH, \
ZLOW, ZHIGH )

spacing= STPSZE

-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch
define(R, 1.0e-2)
text ()= Intersection of two circular Cylinders with Radius R
text ()= generated as general Cylinders
text ()= where ’taboo’ is specified.
text ()= stpsze= STPSZE, maxcells= MAXCELLS

#
# Fill the Universe with Metal.
#
-brick
material= 1
volume= ( -LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber )
doit

#

# First Step,

# £ill Cells above the Diagonal with Material 3.

# these Cells will not be filled by the first circular Cylinder,
# since we will specify ’taboo= 3’.

#
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#
-ggcylinder
material= 3,
origin= ( 0, 0, 0 ), xprime= ( 1, 0, O ), yprime= ( O, 1, 0 ),
range= ( ZLOW, ZHIGH ),

clear
point= ( XLOW, YLOW ), point= ( XLOW, YHIGH ),
point= ( XLOW+(YHIGH-YLOW), YLOW )

doit

#

# Second Step:

# Fill a circular Cylinder in x-Direction,

# but NOT Cells with Material Index 3 (taboo=3).

#
-ggcylinder
material= 0, taboo= 3,
xprime= ( 0, 1, 0 ), yprime= ( O, 0, 1 ), # So the Axis will be in +x.
origin= ( 0, 4e-2, 0 ), # Shift of Origin.
range= ( XLOW, XHIGH ),
clear
point= ( -R, 0 ),
arc, radius= R, type= counterclockwise,
point= ( 0, -R ),
arc, radius= R,
point= (R, 0 ),
doit
#

# Third Step:

# Fill a circular Cylinder in y-Direction,

# but ONLY Cells with Material Index 3 (whichcells=3).

#

-ggcylinder

material= O, whichcells= 3, taboo= none
xprime= ( 1, 0, 0 ), yprime= ( 0, 0, -1 ), # So the Axis will be in +y.
origin= ( 2.e-2, 0, 0 ), # Shift of Origin.
range= ( YLOW, YHIGH ),

clear
point= ( -R, 0 ),
arc, radius= R, type= clockwise,
point= ( 0, R ),
arc, radius= R,
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Material Boundaries

Intersection of two circular Cylinders with Radius 10.0e—-3
generated as general Cylinders

where ‘taboo’ is specified.

stpsze= 691.042323e—6, maxcells= 100000

Figure 1.22: The Intersection of two circular Cylinders, where whichcells and taboo were
specified.

point= (R, 0 ),
doit

-volumeplot
eyeposition= ( 1, 2, 1)
scale= 3.5
doit
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Example

The following describes a reentrant Cavity.

# /usr/local/gdl/examples-from-the-manual/gbor-example.gdf

define(MaxCells, 2e+6)

#

# define the geometry parameters

#

define (RBeamTube, 4.7625e-2)

define(RCurve, 1.0e-2)
define(ZGapNose, 10.9e-2)
define(RLarge, 25.0e-2)

define(RSmall, 15.0e-2)

define(INF, 10000) define(EL, 1) define(MAG, 2)

define(XLOW, -0.250) define(XHIGH, 0.250)
define(YLOW, -0.250) define(YHIGH, 0.250)
define(ZLOW, -0.200) define(ZHIGH, 0.200)

define (STPSZE,

#

define(RCenter, 10.0e-2)

((XHIGH-XLOW) * (YHIGH-YLOW) * (ZHIGH-ZLOW) /MaxCells)**(1/3) )

# gdfidl can evaluate sin(), cos(), atan() and X**Y
# definition of functions degsin() and degcos()

#
sdefine(degsin, [sin((@argl)=*@pi/180)])
sdefine(degcos, [cos((@argl)*@pi/180)])
sdefine(degtan, [sin((@argl)*@pi/180)/cos((@argl)*@pi/180)])
-general
outfile= /tmp/UserName/example
scratch= /tmp/UserName/scratch-

text(3)= A Quarter of a reentrant Cavity.
text ()= The Cavity is described as a Body of Revolution.

text ()=

text ()= maxcells= MaxCells, stpsze= STPSZE

-mesh
pxlow= O*XLOW, pxhigh=
pylow= O0*YLOW, pyhigh=
pzlow= 1*ZLOW, pzhigh=

cxlow= mag, cxhigh=
cylow= mag, cyhigh=
czlow= ele, czhigh=

mag
mag
ele

1xXHIGH
1xYHIGH
1xZHIGH
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spacing= STPSZE

-material
material= 3, type= electric

-brick
#
# We fill the Universe with Metal.
#
material= 3
volume= ( -INF,INF, -INF,INF, -INF,INF )
doit

#
# We carve out the Cavity.
#
-gbor
material= 0, range= ( 0, 360 )
origin= ( 0, 0, 0 )
show= later, # Do not show now, but show later.

clear # Clear a previous Polygon List.
point= ( 0 , 0,
point= ( ZHIGH+2*STPSZE , 0 ),
point= ( ZHIGH+2*STPSZE , RBeamTube ),
point= ( ZGapNose+RCurve, RBeamTube ),
arc, radius= RCurve, size= small, type= clockwise,
deltaphi= 10
define(rdum, RBeamTube+(1+degcos(30))*RCurve)
define(zdum, ZGapNose +(1-degsin(30))*RCurve)
point= ( zdum, rdum )
define(deltaz, RSmall-zdum)
define(deltar, deltaz*degtan(30))
define(ffac, 0.85) ## adjust this for a smooth transition
define(zdum2, zdum+ffacxdeltaz)
define(rdum2, rdum+ffacxdeltar)
point= ( zdum2, rdum2 )

arc, radius= RCurve, size= small, type= counterclockwise,

deltaphi 10
point= ( RSmall, RCenter-0.8*RCurve ),
point= ( RSmall, RCenter ),

arc, radius= RSmall, size= small, type= counterclockwise,

delta= 3
point= ( -RSmall, RCenter ),
point= ( -RSmall, RCenter-0.8*RCurve ),

arc, radius= RCurve, size= small, type= counterclockwise,
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deltaphi= 10

point=
point=

arc
point=

point=
point=

list
doit

#

# Enforce some

#
-mesh

( -zdum2, rdum?2 )
( -zdum, rdum )

, radius= RCurve, size= small, type= clockwise,

( -(ZGapNose+RCurve), RBeamTube ),

( ZLOW-2#STPSZE, RBeamTube ),

( ZLOW-2%STPSZE, 0 )

Meshplanes:

zfixed( 2, -(ZGapNose+RCurve), -ZGapNose ) # At the Noses.

zfixed( 2,

(ZGapNose+RCurve) ,

zfixed( 2, -RSmall, RSmall)

-volumeplot
scale= 3

doit

ZGapNose ) # At the Noses.
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Figure 1.23: A complicated gbor
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Example

The following describes two Bodies of Revolution that look similiar to Glasses. The Shape
is only specified once, but two different Glasses are generated by varying ’zprime’ and 'rprime’

# /usr/local/gdl/examples-from-the-manual/gbor-glasses.gdf
define (MAXCELLS,1le+6)

define (XLOW,-5e-2) define(XHIGH,18e-2)
define(YLOW,-0e-2) define(YHIGH,17e-2)
define(ZLOW,-3e-2) define(ZHIGH, 18e-2)
define (STPSZE, ((XHIGH-XLOW)*(YHIGH-YLOW)*(ZHIGH-ZLOW)/MAXCELLS)**(1/3) )

-general
outfile= /tmp/UserName/glasses
scratch= /tmp/UserName/glasses-scratch-

-mesh
spacing= STPSZE
volume= ( XLOW, XHIGH, \
YLOW, YHIGH, \
ZLOW, ZHIGH )

# Fill the Universe with Vacuum.
define(LargeNumber, 10000)
-brick
material= 0
volume= ( -LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber )
doit

#

# The Glasses:
#

-gbor

#
# Definition of the Cross-Section:
#
clear
point= ( 0.7e-2, 0),
point= ( 0, 4.0e-2 ),
arc, radius=0.25e-2, size= large, type= clockwise
point= ( 0.3e-2, 4.0e-2 ),
point= ( 1.0e-2, 1.0e-2 ),
point= ( 8.0e-2, 0.8e-2 ),
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point= ( 10.0e-2, 1.4e-2 ),
point= ( 15.0e-2, 6.0e-2 ),
arc, radius= 0.4e-2, type= clockwise
point= ( 15.2e-2, 5.4e-2 ),
point= ( 10.0e-2, 0)

#
# That Cross—-Section is used twice,

# with different Parameters for origin, zprime etc..
#

material= 1,

origin= ( -2e-2, 0, 4e-2 ),

zprimedir= ( 1, 0, 0 ),

rprimedir= ( 0, 1, 0 )

range= ( -90, 90 ),
# show= now

doit # This ’doit’ generates the first ’glass’.

material= 3
origin= ( 0, 12e-2, 4e-2 ),
zprimedir= ( 1, -0.5, 0.7 ),
rprimedir= ( 0, 1, 0 ),
range= ( 0, 360 ),

#i# show= all

doit # This ’doit’ generates the second ’glass’
-volumeplot
eyeposition= ( 0.7, 1, 0.5 )
scale= 4
doit
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Figure 1.24: Two complicated gbors (Glasses).
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1.5.5 -stlfile: CAD Import via STL-File

This Section is about importing a Geometry Description from a CAD System?® via a STL-file
(STereo-Lithography). A STL-file describes a closed Body via a Set of Triangles.
The so described Body can be rotated, shrunk or expanded and shifted.

HERFHHBHHHBHHH B H B H BB H RS H R H AR H BB RAFH ARG H R R

# Flags: nomenu, noprompt, nomessage, #
B i
# section -stlfile #

HERFHHBHHHBHHH B H B H BB H R RS H R H R HH AR H BB RAFH ARG H AR

# file= /usr/local/gdl/examples/woman.stl #
# material = 1 #
# whichcells= all, taboo= none, nboundaries= 1 #
# originprime = (0.0, 0.0, 0.0) #
# xprimedirection= ( 1.0, 0.0, 0.0 ) #
# yprimedirection= ( 0.0, 1.0, 0.0 ) #
# xscale= 1.0 #
# yscale= 1.0 #
# zscale= 1.0 #
# debend = no —-- debend Description around uAxis #
# uaxis= z -- [xyz] : Direction of debend-Axis #
# radius= 0.0 #
# vO = 0.0 -— v0, wO: Coordinates of the Axis. #
# w0 = 0.0 #
# show = no -— ( yes | no ) #
# plotbbox= ( -1.0e+30, 1.0e+30, \ #
# -1.0e+30, 1.0e+30, \ #
# -1.0e+30, 1.0e+30 ) #
# - Fixed Planes from Analysis of Patches Normals: #
# xfixed= no --— ( yes | no ) #
# dx= auto —-— Treshold #
# xda= auto —-— Treshold #
# yfixed= no --— ( yes | no ) #
# dy= auto —--— Treshold #
# yda= auto -- Treshold #
# zfixed= no -— ( yes | no ) #
# dz= auto —-— Treshold #
# zda= auto —-— Treshold #
B L L L R R L R R L L L L R R L I B R R R R R IR BRI R R ST
# doit, return, help #

HERFHHBHHHBHHH B HBRHH BB H R RS H R H R R R H BB RAFH ARG

e file= NAME_OF_STLFILE:
The name of the STL-File (in ASCII) that shall be imported.

e material= MAT:
The Material Index that shall be assigned to the described Volume

3AutoCAD can export its Data as a STL-file. The Command is ’stlout’.
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whichcells

Possible Values are all, or a Material-Index.

If whichcells=all, all Volume inside the STL-Body is assigned the Material-Index, pro-
vided the former Material is not taboo. If whichcells is a Material-Index, only the
Parts of the STL-Body that are currently filled with the given Index are assigned the new
Material-Index.

taboo

Possible Values are none, or a Material-Index.

If taboo=none, all Volume inside the STL-Body is assigned the Material-Index. If taboo
is a Material-Index, only the Parts of the STL-Body that are currently filled with another
Index than the given Index are assigned the new Material-Index.

nboundaries= [1,2]
Specifies what Number of Boundaries must be crossed, to consider a Point being inside the
Body.

debend= [yes|no]
The Body which is described by the STL-File can be de-bended. To de-bend, one has to
specify around what Axis the Body originally was bend, and what the bending Radius is.

uaxis= [xlylz]
Parameter for debend=yes. The Axis around which the Body is bended.

radius= NUMBER
Parameter for debend=yes. The bending Radius.

vO= NUMBER, wO= NUMBER
Parameters for debend=yes. The Coordinates of the bending Axis.

originprime= (X0, YO, Z0):
xprimedirection= (XXN, XYN, XZN):
yprimedirection= (YXN, YYN, YZN):

xscale= XS, yscale= YS, zscale= ZS:

The Coordinates of the STL-Data are transformed as follows: A 3x3 matrix (A) is built,
such that A11, A21, A31 are the Components of the normalised ”xprimedirection”. The
Direction ”yprimedirection” is enforced to be perpendicular to ”xprimedirection”. The
Result is normalised and taken as the second Column of (A). The third Column of (A) is
the normalised Cross Product of ”xprimedirection” and ”yprimedirection”. (The Matrix
(A) is a rotation Matrix.)

The Coordinates of a Point P of the STL-set are now transformed via

P <= (A) P

P_x <= P_x * xscale + XO
P_y <= P_y * yscale + YO
P_z <= P_z * zscale + Z0
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e show= [yes|no]
Flag, specifying whether a Plot of the transformed triangles shall be shown.

e plotbbox= (X0,X1, YO0,Y1, Z0,Z1)
If show=yes, ie. when a Plot of the read Triangles is done, only the Triangles within these
Borders are shown.

e xfixed= [yes|no], yfixed= [yes|no], zfixed= [yes|no]
If xfixed=yes, the Triangles are analysed and fixed Meshplanes are inserted where a sig-
nificant Fraction of Triangles with Plane-Normal in x-Direction are.
yfixed=yes: The Corresponding for y-directed Plane-Normals. zfixed=yes: The Corre-
sponding for z-directed Plane-Normals.

e doit:
Puts the current Data as the Data of a STL-Set into the meshing Database.

Example

# /usr/local/gdl/examples-from-the-manual/stl-example2.gdf

-mesh
spacing= 1
volume= ( 0,200, 0,130, -200,0 )

-stlfile
file= /usr/local/gdl/examples/wagner60kASTL.stl
xprime= ( 1, 0, 0 )
yprime= ( 0, 0, -1 )
material= 1, taboo= none
## show= yes,
doit

-volumeplot, scale= 2.5, eyepos= ( 1, 2, 0.5), doit

Example

# /usr/local/gdl/examples-from-the-manual/stl-example-debend.gdf

define(FILE, dipchamSTLOO)
define (INF, 10000)

define(SIGMA, 10e-3)
define (STPSZE, SIGMA/5 )
define (TRAILER, 68%SIGMA)
define (OFFSET,20e-3)
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Figure 1.25: A discretisation of a Wagner Bust, described as a STL-file.
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define(A, 300.0e-3)
define(B, 400.0e-3)

define(ZYL1, 120e-3)
HHHHHHHHHHHHHHHH S R R

-general
outfile= /tmp/UserName/bla
scratch= /tmp/UserName/scratch-
text ()= stpsze= STPSZE
text ()= sigma= SIGMA, sigma/stpsze= eval(SIGMA/STPSZE)
text ()= charge= CHARGE, RDV
text ()= offset= OFFSET

2
-mesh
pxlow= -ZYL1+40e-3, pxhigh= ZYL1+100e-3

pylow= -ZYL1, pyhigh= ZYL1
pzlow= 2e-3, pzhigh= 398e-3
pzhigh= 1.59

spacing= STPSZE

L T s
-material
material= 3, type= electric

-brick
#
# Fill the universe with metal.
#
material= 1, name= Background
volume= (-INF,INF, -INF,INF, -INF,INF)
doit
HRH R R

-stlfile
file= /usr/local/gdl/examples-from-the-manual/DP_VAC_Xapa.stl
material= 0O, whichcells= all, taboo= none

#

# The stl-file does not describe the volume filled with vacuum,
# but the metal body.

# To model the vacuum part, we use a trick:

# We say that the number of triangles that are to be crossed

# when going from inside the body to outside of the body

# (to infinity) has to be a multiple of two.
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#
nboundaries= 2

# define(UA, 1)
define(UA, 2)
# define(UA, 3)
if (UA == 2) then
originprime = ( 0, 0, -6093e-3 )
xprimedirection= ( 0, 0, 1 )
yprimedirection= ( 1, 0, 0 ) # axis= +y
elseif (UA == 1) then
originprime = ( 0, -6093e-3, 0 )
xprimedirection= ( 0, 1, 0 )
yprimedirection= ( 1, 0, 0 ) # axis= -z
else
originprime= ( 0, -6093e-3, 0 )
xprimedirection= ( 0, 1, 0 )
yprimedirection= ( 0, 0, 1 ) # axix= +x

end if

xscale= 1e-3

yscale= le-3

zscale= 1e-3

if (1) then
#

# The geometry is a dipole chamber.

# The charge in reality travels over a circular path.

# As GdfidL can only compute wakepotentials when the

# exciting charge and the witness charges are traveling

# in + z-direction, we de-bend the geometry such that the
# originaly arc-like beampipe is straight.

#

debend= yes
if (UA == 2) then
uvaxis= y # (u,v,w) = (y,z,x)
radius= 8.25
vO0= 0
wO= -8.25
elseif (UA == 1) then
uvaxis= z # (u,v,w) = (z,x,y)
radius= 8.25
vO= -8.25
w0= 0
else
uaxis= x # (u,v,w)= (x,y,2)
radius= 8.25
vO0= 0
wO= -8.25
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end if
end if

##  show= yes
doit

s
-volumeplot
scale= 4
roty= 90
bbylow= 0.
doit
# end

HERFHHBFHHBHHH B H B RS H AR BA SRR B R AR R

#
# Wake-Parameters.
#
-fdtd
—ports
name= lower_end, plane= zlow, modes= 0, npml= 20, doit
name= upper_end, plane= zhigh, modes= 0, npml= 20, doit
—-lcharge
Xpos = OFFSET
ypos =0
charge = le-12
sigma = SIGMA
shigh = 12xSIGMA +TRAILER

#it showdata= yes

# -fdtd, doit
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Figure 1.26: A Discretisation of a Dipole Chamber. The Arc-like Beam-Pipe has been de-bended
to allow the Computation of Wakepotentials.
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1.5.6 -geofunction: Analytic Description

This Section allows the Specification of the Parameters of an analytic Function which describes
a Body. The analytic Function must be programmed in some external Binary which is loaded
at run Time.

HERFHHBHHH B H B HBRHHH B RAH R B H R H R R RS H B H RS H B GHBRA SRR R

# Flags: nomenu, noprompt, nomessage, #
B G i
# section -geofunction #
B B
# material = 1 #
# whichcells= all, taboo= none #
# fdescriptionsubroutine=-none-

# al= 0.0, bl= 0.0 #
# a2= 0.0, b2= 0.0 #
# a3= 0.0, b3= 0.0 #
# a4= 0.0, b4= 0.0 #
# ab= 0.0, b5= 0.0 #
# a6= 0.0, b6= 0.0 #
# a7= 0.0, b7= 0.0 #
# a8= 0.0, b8= 0.0 #
# a9= 0.0, b9= 0.0 #
T s s
# doit, return, help #

HUHH AR R R

e material:
The Material to use.

e whichcells:
Specifies what Areas are to be filled with "material”. If ”whichcells= all”, everything
within the Volume is filled. If "whichcells= N” | only Space that is currently filled with
Material N, and which is within the Volume is filled.

e taboo= [nonel0..50]:
Specifies Volumes NOT to be filled with Material. If "taboo= none”, all Volume within
will be filled with "material”. If "taboo= N”, only Volume that is already filled with
Material N and is within the Volume is filled.

e fdescriptionsubroutine= NAME-OF-A-SHARED-OBJECT:
The Name of the shared Object that contains a SUBROUTINE which computes whether
a Point is in the Body or not. The Subroutine must have the Name fgeosub and has to
have a declaration like

SUBROUTINE fgeosub( Point, AArray, IsIn )

DOUBLE PRECISION, INTENT(IN), DIMENSION(1:3) :: Point
DOUBLE PRECISION, INTENT(IN), DIMENSION(1:20) :: AArray
INTEGER, INTENT(INOUT) :: In
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The Point Parameter are the cartesian Components of the Point, the AArray Parameter
are the numbers al..a9, b1..b9, and the IsIn Parameter is to be computed. It shall be Zero,
if the Point is NOT in the Body.

e doit:

The Parameters of the geofunction are put into the Database, and the shared Object is
loaded.

Example

# /usr/local/gdl/examples-from-the-manual/geofunction-example.gdf
-general

outfile= /tmp/UserName/geofunction

scratch= /tmp/UserName/scratch

-mesh
spacing= 0.02e-3
pxlow= -3e-3, pxhigh= 3e-3
pylow= -3e-3, pyhigh= 3e-3
pzlow= O, pzhigh= 5e-3
czlow= magnetic, czhigh= magnetic
pylow= 0, cylow= magnetic

-brick
material= 0, whichcells= all, taboo= none
volume= ( -INF,INF, -INF,INF, -INF,INF )
doit

# Fill Parts of the Universe which shall later be described
# by the ’geofunction’.
-brick
material= 10
xlow= -1le-3, xhigh= 1le-3
ylow= -INF, yhigh= INF
zlow= -INF, zhigh= INF
sloppy= yes
doit
xlow= -INF, xhigh= INF
ylow= -l1le-3, yhigh= 1le-3
doit
sloppy= no

system( ifort -03 -fPIC -auto -c \
./PointInsideFunction.f90 )
system( gcc -fPIC -shared -W1l,-soname,PointInsideFunction.so \
-o /tmp/PointInsideFunction.so PointInsideFunction.o )
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define(VAL, 1)
-geofunction

#
# If this Inputfile is to be used with PVM/MPI,
# each Task will try to load the Shared Object.
# We assume here, /tmp/ is accessible by each Task.
#
fdescriptionsubroutine= /tmp/PointInsideFunction.so
material= 3, whichcells= 10, taboo= none

## whichcells= all

al=1 # Key
a2= 1825283, a3= 692618, ad4= 0.7 * 3.28e-3, ab= 0,
a8= 1 # Key: Pot gt val
a%= VAL # Aequipotential-Value
doit

material= 4

a8= -1 # Key Pot 1t val
a9= -VAL # Aequipotential-Value
doit

-brick, material= 0, whichcells= 10
volume= ( -INF,INF, -INF,INF, -INF,INF ), doit

-material
material= 3, type= electric
material= 4, type= electric
material= 10, type= electric

-volumeplot, scale= 4, eyepos ( -1, -2, 3 ), doit
-eigenvalues

estimation= 100e9
# doit
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The Sourcecode PointInsideFunction.f90:

SUBROUTINE fgeosub( Point, A, In )

DOUBLE PRECISION, INTENT(IN), DIMENSION(1:3) :: Point

DOUBLE PRECISION, INTENT(IN), DIMENSION(1:20) :: A

INTEGER, INTENT(INOUT) :: In

DOUBLE PRECISION :: Pi, Phi, P

DOUBLE PRECISION :: x, y, z, z0, zl1, zz, az, rmz, oodL, a0l, al0
Pi= 4%ATAN(1.0d0)
IF (NINT(A(1)) == 1) THEN

x= Point (1)
y= Point(2)
z= Point(3)
P = A(4)+A(5)*z
Phi= A(2)*(x**x2-y**2) &
+ A(3)* (x**2+y**2+(P/Pi) **2) *wbCos (2*Pi*z/P)

IF (A(8) > 0) THEN
IF (Phi > A(9)) THEN
In= 1
ELSE
In= 0
END IF
ELSE
IF (Phi < A(9)) THEN
In= 1
ELSE
In= 0
END IF
END IF

ELSE IF (NINT(A(1)) == 2) THEN

al,a2,a3,a4,ab,a6,a7,a8,a9 => A( 1: 9)
b1,b2,b3,b4,b5,b6,b7,b8,b9 => A(11:19)

Period described as a Polinomial
Amplitude described as a Polinomial

x= Point (1)

y= Point(2)

z= Point (3)

z0= A(2)

z1= A(3)

write (x,%) 7 a(1:9):’, a(1:9)
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lc write (*,*) ’ a(11:19):’, a(11:19)
IF ((z < z0) .0R. (z > z1)) THEN
In= 0
RETURN
END IF
zz= z-z0
oodL= 1 / (z1-z0)
P = A(4) +zzx(A(5)-A(4))*oodL
az= A(6) +zzx(A(7)-A(6))*oodL
rmz= A(8)+zzx(A(9)-A(8))*oodL
al0= (rmz**2-1) &
/ (2% (rmz*az) **2+ (rmz**2+1) * (P/P1) **2)
a0l= ((rmz**2+1)*az**2+2% (P/Pi)**2) &
/ (2% (rmz*az) **2+ (rmz**2+1) * (P/Pi) **2) &
/ az*x*2
Phi= a0lx(x**2-y**2) &
+ al0x (x**2+y*x2+(P/P1i) **2) *wbCos (2+¥Pi*zz/P)

IF (A(11) > 0) THEN
IF (Phi > A(12)) THEN
In= 1
ELSE
In= 0
END IF
ELSE
IF (Phi < A(12)) THEN
In= 1
ELSE
In= 0
END IF
END IF

ELSE
In= 0
END IF
CONTAINS

DOUBLE PRECISION FUNCTION wbCos( x )
DOUBLE PRECISION, INTENT(IN) :: x

DOUBLE PRECISION :: xx
INTEGER :: iSign

xx= ABS(x)

DO WHILE (xx > 2%Pi)
Xx= XX - 2*Pi
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END DO

IF (xx > Pi) THEN
iSign= -1
xx= xx - Pi
ELSE
iSign= 1
END IF

IF (xx > Pi/2) THEN
iSign= -iSign
xx= Pi - xx

END IF

wbCos= iSign* &
(1 - xx*x*%2/2 + xx*x4/(2%3%4) - xx**%6 / (2.%3.%4.%5.%6.) )
Il + xx**x8 / (2.%3.%4.%5.%6.%7.%8.) &
I - xx*%*10 / (2.d0%3.d0%*4.d0*5.d0*6.d0*7.d0*8.d0*9.d0*10.d0) )
END FUNCTION wbCos

END SUBROUTINE fgeosub
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Figure 1.27: Part of a RF-Quadrupole, where the Electrodes are described by an Algorithm.
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1.5.7 -transform: Rotations, Translations

All geometric Items are transformed by a Transformation Matrix. Initially, that Transforma-
tion Matrix is the unity Matrix. The Specification of a Translation or Rotation modifies the
transformation Matrix accordingly. The Transformations are applied one after the other.

B S R S s R

# Flags: nomenu, noprompt, nomessage, #
e R R R R R R R R B B
# Section: -transform #
e e R R R R e R R B B
# -translate #
# -rotate #
# #
# Matrix: #
# 1.00000000 s 0.00000000 R 0.00000000 R 0.00000000 #
# 0.00000000 s 1.00000000 s 0.00000000 s 0.00000000 #
# 0.00000000 s 0.00000000 s 1.00000000 s 0.00000000 #
# 0.00000000 s 0.00000000 s 0.00000000 s 1.00000000 #
e R R R R R R R R R B
# reset, 7, return, help #

B R s S s S s R

e —-translate:
Enters the Section to specify the next Translation.

e -rotate:
Enters the Section to specify the next Rotation.

® reset:
Resets the transformation Matrix to the unity Matrix.

B R R s s s S s R

# Flags: nomenu, noprompt, nomessage, #
A R RN R R R
# Section: -translate #
B L R L R L L L L R L B | L L L e R A RIS SRR R A
# offset= ( 0.0, 0.0, 0.0 ) #
# #
A R R R R
# doit, 7, return, help #

S S

e offset:
Specifies the X, Y, Z Components of the Offset to be applied.

e doit:
The Transformation Matrix is modified such that all subsequent specified geometric Items
are translated by the specified Offset
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HUHH AR R

# Flags: nomenu, noprompt, nomessage, #
HHHHHHHE R R R R
# Section: -rotate #
HHHHHHHE R R R
# axis= ( 0.0, 0.0, 1.0 ) #
# angle= 90.0 #
# Matrix: #
# 1.00000000 , 0.00000000 ) 0.00000000 ) 0.00000000 #
# 0.00000000 , 1.00000000 ) 0.00000000 ) 0.00000000 #
# 0.00000000 , 0.00000000 , 1.00000000 , 0.00000000 #
# 0.00000000 , 0.00000000 , 0.00000000 s 1.00000000 #
i
# doit, 7, return, help #

HERFHHBHHHBHHH B H B BB R R FH B H R R H BB RAFH RSB FH AR R

® axis:
Specifies the X, Y, Z Components of the Axis to rotate around.

e angle:
Specifies the Angle in Degrees to rotate.

e doit:
The Transformation Matrix is modified such that all subsequent specified geometric Items
are rotated by the specified Angle around the specified Axis.

Example

-general
outfile= /tmp/UserName/bla
scratch= /tmp/UserName/scratch

-mesh
spacing= 5e-3
pxlow= -0.4, pxhigh= 0.3
pylow= -0.3, pyhigh= 0.3
pzlow= -0.1, pzhigh= 0.4

—-transform, reset
-brick
material= 0

volume= ( -BIG,BIG, -BIG,BIG, -BIG,BIG )
doit
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# Translate all subsequent Items by (0.1, 0, 0).
#
-translate, offset= ( 1/10, 0, 0 ), doit

-brick
material= 1
name= brickl
xlow= 0, xhigh=
ylow= 0, yhigh=
zlow= 0, zhigh=
doit

O O O
w N =

#

# Additionally to the initial Tramslation,

# rotate by 90 Degrees around the (0,0,1)-Axis,

# then rotate 20 Degrees around the (0,1,0)-Axis,

#
-rotate,
axis= ( 0, 0, 1 ), angle= 90, doit
axis= ( 0, 1, 1 ), angle= 20, doit
#

# Next Brick, most Parameters as the first One,

# but additionally to the Translation now also rotated.
#

-brick, material= 2, name= brick2, doit

#

# Next Rotation, same Parameters.

# Because the Rotations etc are all performed,

# subsequent Items are translated once and rotated now four times.

-rotate,
axis= ( 0, 0, 1 ), angle= 90, doit
axis= ( 0, 1, 1 ), angle= 20, doit

# Next Brick, except for ’material’, the same Parameters as the previous Brick.
-brick, material= 3, name= brick3, doit

-volumeplot, scale= 3, doit
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Figure 1.28: Discretisation of some Bricks, translated and rotated.
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1.6 -volumeplot: Shows the resulting Mesh

This Section enables the Generation of the Grid and shows the discretised Material Boundaries
as generated from the geometric Primitives specified so far.

B S R S s s S s R

# Flags: nomenu, noprompt, nomessage, #
A R R
# Section: -volumeplot #
D L R L R R B L L R R | L L L e R L RIS S IRR E A
# onlyplotfile = no -- Do not display Plot #
# showlines = no #
# text = yes #
# scale =1.80 #
# 2dplotopts = —-geometry 690x560+10+10 #
# plotopts = -geometry 800x668+410+40 -noclip #
# eyeposition = ( -1.0, -2.30, 0.50 ) #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# rotx = 0.0000 , roty = 0.0000 , rotz = 0.0000 #
# #

it A A A A A
# doit, 7, return, help #
HAHEHEH S

e showlines= [yes|no]:
Flags, whether the Materialplot shall have Lines where the Material Boundaries cross
Gridplanes.

e text= [yes|no]:
Flags, whether the Annotation-Text that has been specified via text()= bla bla in the
Section -general should be plotted together with the Material Boundaries.

e scale= SCALE:
The initial Zoom Factor of the resulting Plot.

e plotopts= ANY STRING CONTAING OPTIONS FOR gdl.3dplot:
gdl does not display the Data itself, but writes a Datafile for gd1.3dplot and starts
gd1.3dplot to display these Data.
Useful Options are:
— -colorps : Produce colour PostScript and quit
— -greyps : Produce grey-scale PostScript and quit
— -geometry X11-GEOMETRY : Initial Geometry for the X11 Window of gd1.3dplot.
— -o FILENAME : If a PostScript is requested, the File written is FILENAME. The
default Filename is dataplot.ps.

e eyeposition= (XEYE, YEYE, ZEYE):
This specifies the initial Eyeposition for the 3D Plot that will be produced. As soon
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as the Plot appears, you can interactively change the Eyeposition with the Buttons of
gd1.3dplot, but for a complex Geometry, this may take some Time.

bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a Bounding Box. Only the Materialboundaries that lie within
the Box are plotted. Use this if you want to see the Materialdistribution in a Plane.

rotx= PhiX, roty= PhiY, rotz= PhiZ:

This specifies the Parameters of an additional Rotation Matrix. The Data is rotated around
the x-Axis by an angle of PhiX, then the Result is rotated around the y-Axis by an angle
of PhiY, and finally the Result is rotated around the z-Axis by an angle of PhiZ.

doit:
If you say ”doit”, the relevant Settings in ”-mesh” are checked, the Mesh is generated, and
the Material-Boundaries are plotted.
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Figure 1.29: A twisted Waveguide. Only the Material Boundaries behind the Plane y=0 are

shown.

Example

The following shows the Material Distribution of a Waveguide Twist again, this Time, the
Parameter bbyhigh is specified such, that only the Material Boundaries behind the Plane y=0

are shown.

include(/usr/local/gdl/examples-from-the-manual/ggcylinder-twisted.gdf)

-volumeplot
eyeposition= ( 1, 2, 1.3 )

scale= 4.5

bbyhigh= 0

doit
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Figure 1.30: A twisted Waveguide. The Plot is rotated slightly around the y-Axis.

Example

The following shows the Material Distribution of a Waveguide Twist again, this time, the
Parameter roty is specified nonzero.

include(/usr/local/gdl/examples-from-the-manual/ggcylinder-twisted.gdf)
-volumeplot

eyeposition= ( 1, 2, 1.3 )

scale= 4.5
roty= 20

doit
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1.7 -cutplot: Shows the resulting Mesh in a selected Mesh-
plane

This Section enables the Generation of the Grid and shows only in a selected gridplane the
discretised Material Boundaries as generated from the geometric Primitives specified so far.

A similar Effect can be achieved with the Section -volumeplot with the Aid of the Parameters
bb?low, bb7high.

B S s S R s R

# Flags: nomenu, noprompt, nomessage, #
B L R L R L B L L R R L B R | L L L e e R R A BRI SRR R A
# Section: -cutplot #
A RN R
# onlyplotfile= no -- don’t display Plot #
# draw = both -- both | approximated | input #
# grid = yes -- yes|no #
# normal= z —-— Plane Normal of the Cut-Plane #
# cutat = undefined -- The Coordinate of the Cut-Plane #
# #
# plotopts= -geometry 800x668+410+40 -noclip #
# eyeposition= ( -1.0, -2.30, 0.50 ) #

HAHEHEH
# doit, 7, return, help #
##H S H S

e draw= [both|approximated|input]:
Flags, whether the Materialboundaries should be plotted both as diagonal Mesh Fillings
and as smooth Mesh Fillings (both), or only as diagonal Mesh Fillings (approximated),
or only as smooth Mesh Fillings (input).

e grid= [yes|no]:
Flags, whether the Positions of the Grid Planes shall be plotted together with the Material
Approximation.

e normal= [x|yl|z], cutat= :
cutat: The Coordinate Value of the Gridplane in Direction normal where the Material
Filling shall be plotted.

e plotopts= ANY STRING CONTAINING OPTIONS FOR gdl.3dplot:
gdl does not display the Data itself, but writes a Datafile for gd1.3dplot and starts
gd1.3dplot to display these Data.
Useful Options are:
— -colorps : Produce colour PostScript and quit
— -greyps : Produce grey-scale PostScript and quit
— -geometry X11-GEOMETRY : Initial Geometry for the X11 Window of gd1.3dplot.

— -0 FILENAME : If a PostScript is requested, the File written is FILENAME. The
default Filename is dataplot.ps .
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e eyeposition= (XEYE, YEYE, ZEYE):
This specifies the initial Eyeposition for the 3D Plot that will be produced. As soon
as the Plot appears, you can interactively change the Eyeposition with the Buttons of
gd1.3dplot, but for a complex Geometry, this may take some Time.

e doit:
If you say ”doit”, the relevant Settings in ”-mesh” are checked, the Mesh is built, and the
Material Boundaries in the selected Plane are plotted.
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1.8 Solver sections: Eigenvalues and driven Time Do-
main Problems

1.8.1 -eigenvalues

S S

# Flags: nomenu, noprompt, nomessage, #
g s s s
# section —eigenvalues #
A R R R R R
# solutions = 15 #
# estimation = undefined #
# storeallmodes= no #
# flowsave = 0.0 #
# fhighsave = 1.0e+30 #
# passes = 2 #
# pfac2 = 1.0e-3 #
# lossy = no -— Lossy or dispersive Computation #
# flowsearch = undefined -- Edges of the search Region... #
# fhighsearch= undefined -- ...when "lossy= yes" #
#  -ports -- ...when "lossy= yes" #
# -linitialfields -- ...when "lossy= yes" #
# #
# #
# compressed = no —- Minimal RAM, more CPU and I0 Time #
A R RN R R R
# return, doit, help, 7 #

S R

e solutions= NSOL:
The Number of Basis Vectors to use for solving the Eigenvalue Problem. This Number
should better not be smaller than, say, 15. The more Basis Vectors you allow, the more
accurate the Solutions will be. But: The Memory Requirement and roughly also the CPU
Time is proportional to this Number. If compressed= yes is specified, the Memory Re-
quirement is NOT proportional to the Number of Basisvectors, as then the Basisvectors are
compressed and stored to Files and retrieved from Files. The compressed Basisvectors are
written to Files with Names built from the scratchbase Parameter of Section -general.

e estimation= FUP:
Estimation of the resonant Frequency of the highest Mode, i. e. the NSOL.st Mode.
This Parameter is mandatory.
A common Error, that even we run into, is, to specify this Estimation badly wrong. To get
an Estimate, compute with a coarse Mesh, specify the estimated highest Frequency quite
high, and compute. The Estimate is good, if gd1 finds about 20% good Modes less than
you were asking for.

e storeallmodes= [yes | no]:
Selects whether even the static Modes shall be saved.

98



gd1l computes normally 20 to 30 % static Modes (when passes=1), but does not store
them. If you do not believe that these static Modes are really static, you can enforce the
storing to File with this Option. When the static Solutions are in the outfile, you can view
these ’Solutions’ with gd1.pp.

o flowsave= FLOW, fhighsave= FHIGH:

The Frequency Range, where resonant Fields shall be stored to Outfile. This is really
only useful when computing in Parallel, and there is enough Diskspace on the Compute-
Nodes to hold the intermediate Files, but not enough Diskspace on the Master-Node

to hold all the Results of the Computation. For such Situations, you may also spec-

ify -general, dice= yes, iodice= yes, which specifies that the Resultfields shall be
stored on the local Disks of the Compute Nodes. BUT: -general, dice= yes, iodice= yes
can only be used for the PVM Version, not the MPI Version.

e passes= NPASS:
gd1 uses an Algorithm of Tiickmantel*® to solve the Eigenproblem. This Algorithm estab-
lishes a Set of NSOL Basisvectors that are mutually Orthogonal and (hopefully) span only
the Subspace also spanned by the Eigenvectors corresponding to the NSOL lowest Eigen-
values.
But since gd1 solves the Eigenproblem resulting from the discretised Version of
[E] 'V x[u] 'V x E = w?E, gd1 normally finds 20 to 30 % Eigenvalues very near to Zero.
These Eigenvalues belong to static Fields, w = 0.
If you specify passes>1, gd1 throws away the static Components in its already established
Basis Vectors and can find more resonant Modes with the same specified NSOL. Also, the
Accuracy of the Fields becomes somewhat better.

e pfac2= PFAC2:
gd1 uses an Algorithm of Tiickmantel to solve the algebraic Eigenproblem resulting from
the discretised MAXWELLian Equations. This Algorithm has an internal accuracy Factor,
called pfac2, that controls the relative Cleaning of the Basisvectors from KEigenvectors
outside the Range 0 to FUP, in which the NSOL resonant Fields are expected.
A smaller pfac2 leads to increased CPU-Time, but better Accuracy for the lower Modes.
A good Value is pfac2=1e-3.

e lossy= [yes|no]:
When lossy= yes, Eigenvalues are searched in a Model where the lossy Parameters and
dispersive Parameters of Materials with type= normal are taken into Account. This Al-
gorithm needs four times as much Memory as the lossfree Algorithm.

e flowsearch= F1, fhighsearch= F2:
Only used when lossy=yes: The Frequency Range where the Resonances of the lossy
Device are searched in.

® —ports:
When lossy= yes, absorbing Boundary Conditions are applied at Ports that are specified

4J. Tiickmantel, ‘Urmel with a High Speed and High Precision Eigenvector Finder’, CERN/EF/RF 83-5, 11
July 1983

5J. Tiickmantel ‘An improved version of the eigenvector processor SAP applied in URMEL’, CERN/EF/RF
85-4, 4 July 1985
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via —eigenvalues,-ports. The Section -eigenvalues,-ports is the same as the Section
-fdtd,-ports.

e —linitialfields:
When lossy= yes, Initial Fields can be loaded as starting Field.
The Section -eigenvalues,-linitialfields is the same as the Section -fdtd,-linitialfields.

e compressed:
If compressed=yes, the Basis Vectors will be compressed and stored to Scratchfiles and
re-read when needed. This takes much less Memory during the Eigenvalue computation,
but increases substantially the Input-Output Time.

e doit:
If you say "doit”, the Settings in ”-general, -mesh, -material” are checked, the Mesh is
generated, and the Iteration for the resonant Fields is performed.
After the Field Computation, the Fields are written to File and the Program stops.

Example

The following specifies that we want to compute with 15 Basisvectors, we want to perform
two Passes to search for the Eigenvalues, and we estimate that the highest resonant Frequency
of the 15 to be found will be about 1.3 GHz. The final doit starts the Eigenvalue Computation.

-eigenvalues
solutions= 15
passes= 2
estimation= 1.3e9
doit
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1.8.2 -fdtd: Compute time dependent Fields

This Section shows the Subsections that only make Sense for Time Domain Computations. The
”doit” in this Section starts the Time Domain Computation.

HUHH A R R R

# Flags: nomenu, noprompt, nomessage, #
T s s
# Section: -fdtd #
S
# -ports -- Absorbing Boundary Conditions. #
# -pexcitation -— Excited Port Modes. #
# -lcharges —-- One or more relativistic Line Charges. #
# —windowwake -- Wakes in a moving Mesh Window. #
# —clouds -- not yet finished. #
# -linitialfields -- Loads initial Fields at t=0. #
# -voltages -- Enforce Voltages between Points. #
# —decaytime —-- z-dependent Damping. #
# —time -- Timestep etc. #
# —-storefieldsat -- When to store Fields. #
# —fexport -— When to store Fields. #
# —-smonitor —- What Flux Quantities to store. #
# -fmonitor —- What Field Quantities to store. #
# —pmonitor —- What Power Quantities to store. #
# #
# hfdtd= no —-- Use higher Order Curl-Operators. #
B B
# doit, 7, return, help #

HERFHHBHHHBHHH B H B H B RAHHEFH R H R R H B H RIS H ARG H B FH R

® —ports:
Branches to the Sub-Section -fdtd/-ports where you specify the Location of "ports” and
the Properties of these Ports.

e -pexcitation:
Branches to the Sub-Section -fdtd/-pexcitation, where you specify the Center Fre-
quency, the Bandwidth and the Amplitudes of selected Modes of selected Ports.

e -lcharges:
Branches to the Sub-Section -fdtd/-1charge, where you specify the Properties of rela-
tivistic Line Charges.

e —-windowwake:
Branches to the Sub-Section -fdtd/-windowwake, where you specify the Properties of a
moving Mesh Window to compute the Wakepotential of relativistic Line Charges.

e —clouds:
Branches to the Sub-Section -fdtd/-clouds, where you specify the Properties of non-
relativistic Charge Clouds.
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-linitialfields:
Branches to the Sub-Section -fdtd/-1initialfields, where you specify what Fields shall
be the Initialfields of a Time dependent Computation.

-voltages:
Branches to the Sub-Section -fdtd/-voltages, where you specify excited Voltages be-
tween arbitrary Points.

—-decaytime:
Allows z-dependent Damping of the Fields without specifying a graded lossy Dielectric.

-time:

Branches to the Sub-Section -fdtd/-time, where you specify the minimum and maximum
allowed Simulation Time.

You can also specify the Times where the electric and magnetic Fields are written.

-storefieldsat:
Branches to the Sub-Section -fdtd/-storefieldsat. You can specify multiple Time-
Ranges where the electric and/ or magnetic Fields are stored to Files.

—-fexport:
Allows Writing of selected Field Parts as ASCII Files during the Time Domain Computa-
tion. This is useful for making Movies.

-smonitor:
Branches to the Sub-Section -fdtd/-smonitor, where you specify what Scalar Quantities
shall be monitored during the Time Domain Computation.

-fmonitor:
Branches to the Sub-Section -fdtd/-fmonitor, where you specify what Field Quantities
shall be monitored during the Time Domain Computation.

-pmonitor:
Branches to the Sub-Section -fdtd/-pmonitor, where you specify what Power Quantities
shall be monitored during the Time Domain Computation.

doit:

If you say "doit”, the Settings in ”-general, -mesh, -material” are checked, the Mesh is
generated, and the Iteration for the Time dependent Fields is performed.

While the Field Computation is running, the Amplitudes of selected Port Modes are writ-
ten, and selected electric and magnetic Fields are written. Also selected scalar, Field or
Power Quantities are written. If a Wake Computation is performed, the Data required
for the Computation of Wakepotentials is also written. These Amplitudes and Fields (and
Wake-Data) can be processed further by gd1.pp. It is not needed to wait until the Time
Domain Computation has finished. gdl.pp mat be used while the Computation is run-
ning, to analyse the Data which is already available. After the Field Computation, the
Program stops.
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1.8.3 -fdtd,-ports/ -eigenvalues,-ports

The Section -time,-ports is the same as -eigenvalues,-ports.

A 7Port” is a Part of the Border of the computational Volume that shall be treated as an
infinitely long Waveguide. In this Section you specify the Location of Ports. You also specify
the Number of Modes whose time Amplitudes shall be written to File.

HERFHHBHHH B H B HBHHH B RAH R R H R H R R R H BB RAFH ARG H R R

# Flags: nomenu, noprompt, nomessage, #
S T T L s s
# Section: -ports #
B L L L R L R R L L L L R R L I B R R R R R IR BRI R R R
# name = noname-001 #
# plane = xlow #
# modes =1 #
#(pxlow= -1.0e+30 , pxhigh= 1.0e+30 ) Ignored for plane=xlow
# pylow= -1.0e+30 , pyhigh= 1.0e+30 #
# pzlow= -1.0e+30 , pzhigh= 1.0e+30 #
# epsmaximum= 2.0 #
# muemaximum= 1.0 #
# npml = 40 -— No of PML-Planes #
# dampn = 50.0e-3 —-— Damping factor in last Plane #
# enforcemesh= yes -- Enforce translational invariant Mesh #
S T L s s
# doit, list, 7, return, help #

HERFHHBHHH B H B H B H BB H R RS H B H B R R AR H BB RASH ARG H B SH R R

e name = ANY-STRING-WHICH-COULD-SERVE-AS-FILENAME:
Specifies the Name of the Port.
This Name is used, eg. to identify the Port later on. If you enter the Name of an already
defined Port, you will edit the Parameters for this already defined Port.
The Length of the name has to be less or equal 64 Characters.

e plane= [xlow|xhigh|ylow|yhigh|zlow|zhigh]:
Specifies at which of the six limiting Planes of the computational Volume the Port is
located on.

e modes= NMODES:
Number of orthogonal Modes whose Amplitudes shall be monitored. This Number may be
zero. The absorbing Boundary Conditions work independently of the orthogonal Modes,
so there is no need to specify a large Number here.

No port Amplitudes are monitored when performing a lossy Eigenvalue computation.

e pxlow, pxhigh, pylow, pyhigh, pzlow, pzhigh:
Specifies the Rectangle where the Port is in. These Parameters are needed if there is more
than one Port at one of the six possible Planes [x|y|z] [1low|high].
If the Port is at xlow or at xhigh, the Values for pxlow and pxhigh are ignored. If the Port
is at ylow or at yhigh, the Values for pylow and pyhigh are ignored. If the Port is at zlow
or at zhigh, the Values for pzlow and pzhigh are ignored.
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e cpsmaximum, muemaximum:
Values of the "densiest” Materials at the port. These Values are used to compute the
Patterns of the Port-Modes.

e npml:
The Number of ”Perfectly Matched Layers” to use as absorbing Boundary Conditions.
30 is a good Value.
If a relativistic Charge enters or exits the computational Volume through the Port, you
should choose a Value of 40 or more.

e dampn:
The damping Factor of the outermost ” Perfectly Matched Layer”.

e doit:
Stores the current Data and enables the editing of the Parameters of a Port that is not yet
defined (a new Port).

e list:
Lists the Names of the already defined Ports.

Example

The following specifies that we want to have attached four Ports: Two are at the lower
x-Boundary, the Names are xlowl, xlow2. Two Ports are at the upper x-Boundary of the
computational Volume, the Names are xhighl, xhigh2. The Ports at the same Boundary are
distinguished by their pzlow, pzhigh Parameters.

-fdtd
—ports
name= xlowl, plane= xlow , pzlow= O, modes= 10, doit
name= xhighl, plane= xhigh, pzlow= 0, modes= 2, doit
name= xlow2, plane= xlow , pzhigh= 0, modes= 2, doit
name= xhigh2, plane= xhigh, pzhigh= 0, modes= 2, doit
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1.8.4 -fdtd,-pexcitation: What Port-Mode shall be excited

Here you may specify what Port-Excitation shall be used. The Excitation can be a switched on
Sine-signal, a Gaussian Pulse modulated with a Sine, or a user specified Signal.

B L L e L R L B R L L L L R R L I B R R R IR BRI R R I
# Flags: nomenu, noprompt, nomessage, #
S T s s
# Section: -pexcitation #
B L L e L R L R R L L L L R R L I B R R R R B BRI R R ST
port = wundefined
mode =1

amplitude = 1.0

phase 0.0
frequency = undefined
bandwidth = undefined
risetime 0.0
signalcommand= -none-
S T L s
# nextport, list, 7, return, help #
B L L e L R R R L L L L L R R L I B R R R IR BRI R S IR

H O H HF H OH H R
HOoH OH OH OH OH OHH

e port= NAME-OF-AN-ALREADY-DEFINED-PORT:
The Name of the Port where the Mode shall be launched. This is a Name that you have
used in the Section ”-fdtd/-ports”.

e mode:
The Number of the Mode to launch. The Modes are numbered sequentially, starting from
1. The Modes are sorted by the negative real Part of the Square of their propagation
Constants.

e amplitude:
The Amplitude of the Mode to launch. If the Amplitude is Zero, no Mode is launched.
If you specify a monochromatic Excitation, i.e. if you specify a "risetime” # 0, then the
Power of the excited Wave in the steady state is "amplitude” Watts. If you specify a
broadband Excitation, then the maximum Power of the excited Wave is approximately
"amplitude” Watts.

e phase:
The Phase of the Excitation. This is probably only useful when more than one Mode is
excited.

e frequency:
If "risetime # 07, i.e. when using a monochromatic Excitation, the Frequency of the Exciti-
ation. When "risetime = 07, i.e. when using a broadband Excitation, the Centerfrequency
of the Excitation.

e bandwidth:
The Frequency Bandwidth of the time Signal to use as Excitation.
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e risetime:
If specified as Nonzero, a monochromatic Excitation is used. The Risetime of the Excitation
is "risetime”.

e list:
Lists the Names and Planes of the Ports as specified in Section ”-fdtd /-ports”.

e signalcommand= NAME_OF_COMMAND:
If specified as -none-, the Excitation will be computed from risetime, frequency, bandwidth
and amplitude. If specified as any other String, every XXX Timesteps the specified Com-
mand is executed to compute the Signal at the next XXX Timesteps. The Command is
executed as:

NAME_OF_COMMAND < ./gdfidl-actual-time-interval > ./gdfidl-actual-signal

The File ./gdfidl-actual-time-interval contains the following Data:

— In the first Line there are iTimel, iTime2, TimeStep

* iTimel: The Number of the first Timestep for which the Signal shall be defined.
*x iTime2: The Number of the last Timestep for which the Signal shall be defined.
* TimeStep: The Width of a Timestep.

— in the second Line there are Beta, Alpha, DeltaZ.
*x Beta: The real Part of the propagation Constant of the selected Mode at the

selected Frequency frequency.

% Alpha: The imaginary Part of the propagation Constant.
x DeltaZ: The Width of the Mesh at the selected Port.

The Signalcommand NAME_OF_COMMAND has to write to stdout simply the Values of the
Signal at the Timesteps iTimel to iTime2, one line for each value.

e nextport:
Switches to the next Port-Excitation. For the next Ports, you may specify different Pa-
rameters port, mode, amplitude and phase, but the Parameters frequency, bandwidth
and risetime are the same for all excited Ports.
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Example

The following specifies that the fundamental Mode of the Port with Name InputPort shall
be excited. Its Amplitude shall be ’1’, the Centerfrequency of the excited Pulse shall be 1.2
GHz, and the Bandwidth of the excited Pulse shall be 0.7 GHz.

-fdtd,
-pexcitation
port= InputPort
mode= 1

amplitude= 1
frequency= 1.2e+9
bandwidth= 0.7e+9

Example

The following specifies that the fundamental Mode of the Port with Name InputPort1 shall
be excited. Its Amplitude shall be ’1’; the Frequency of the excited Signal shall be 1.2 GHz,
and the Risetime until Steady State of the Excitation shall be 10 HF-Periods. In Addition, the
fundamental Mode of the Port with Name InputPort2 shall be excited. Its Amplitude shall be
1.

-fdtd,
-pexcitation
port= InputPortl, mode= 1, amplitude= 1, phase= 0
frequency= 1.2e9, risetime= 10 / 1.2e9
nextport
port= InputPort2, mode= 1, amplitude= 1, phase= 0

107



Example

The following specifies that the fundamental Mode of the Port with Name InputPort shall
be excited. The Portmodes Pattern shall be computed for a Frequency of 10 GHz, and the Signal
of the Excitation shall be defined by an external Signal-command.

-fdtd,
-pexcitation

port= InputPort
mode= 1
amplitude= 1
frequency= 10e9

#

# Compile the Signalcommand.

#

system($F90 signal-command.f -o signal-command)
signalcommand= ./signal-command

This is the Sourcefile signal-command. f:

PROGRAM SignalCommand
IMPLICIT DOUBLE PRECISION (a-h,o0-z)

Pi= 4*ATAN(1.0dO0)
Frequency= 10e9
TRise= 10/Frequency
TDecay= 20/Frequency
THold= 50/Frequency
READ (*,*) iTimel, iTime2, TimeStep
READ (*,%*) Beta, Alpha, DeltaZ
DO iTime= iTimel, iTime2, 1
ActualTime= iTimex*TimeStep
IF (ActualTime .LE. TRise) THEN
Phi= ActualTime * Pi / TRise
Factor= (1-COS(Phi))/2
ELSE IF (ActualTime .LE. TRise+THold) THEN
Factor= 1
ELSE IF (ActualTime .LE. TRise+THold+TDecay) THEN
Phi= (ActualTime - (TRise+THold)) * Pi / TDecay
Factor= (1+C0S(Phi))/2
ELSE
Factor= 0
ENDIF
Factor= Factor * TimeStep / DeltaZ
WRITE (*,*) Factor*SIN(2+PixFrequency*ActualTime)
ENDDO
END PROGRAM SignalCommand
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1.8.5 -fdtd,-lcharge: Properties of relativistic Line-Charges

In this Section one specifies the Properties of one or several relativistic Line-Charges. When
computing with the conventional Scheme, i.e. not with the Windowwake Algorithm, one can
specify up to 100 Linecharges, each with a different Charge, different Position, different Distri-
bution and different Direction of Flight. When using the Windowwake Algorithm, all Charges
must go in positive z-Direction, and they must have the same Shape. They may differ in their
Positions and Charge. Once the Properties of a Linecharge are specified, one switches to the
next Linecharge with the Command 'nextcharge’.

The standard Usage of this Section is to compute Wakepotentials. When a nonzero Charge is
specified, and a Time Domain Computation is performed, the Wakepotentials are computed as
the Potential that is seen by Witness Particles that are traveling in positive z-Direction. When
the conventional Scheme is used, Fields and Port Amplitudes may be stored and monitored as
well.

HERFHHBHHHBHHH B H B H B RAHHRFH R HBRH RS H BB RAFH ARG H AR R

# Flags: nomenu, noprompt, nomessage, #
g g
# Section: -lcharge #
HHEH R
# ————- Parameters of a Line Charge: ------ #
# charge = 0.0 -- [As] #
# shape = gaussian -- gaussian | triangular | table #
# tablefile= -none-

# xtable = 1.0 -= [m] #
# sigma = undefined == [m] #
# isigma = 6 —-— Number of Sigmas to use. #
# xposition = 0.0 -= [m] #
# yposition = 0.0 -= [m] #
# direction = +z -— +z, -z #
# soffset = 0.0 -= [m] #
# beta = 1.0 -- [1], quite a Hack, if not 1. #
# - Other Parameters: —————- #
# shigh = auto -= [m] #
# showdata = no --— ( yes | no ) #
# napoly = yes -— ( yes | no ) #
# naccuracy= 10.0e-6 -- wanted acc for poisson-eq in Napoly alg. #
#  ignoretem= yes —-- should be "yes" for Wx, Wy #
g g g
# 7, nextcharge, return, help #

HUHH A R R R

e charge:
The total Charge of the Linecharge.
If the Position of the Charge is specified such that the Charge travels along a magnetic
Plane, the Charge taken for the computational Volume is half the Value.
If the Charge travels along two Planes of Symmetry simultaneously, the Charge in the
Volume is a Quarter of the specified Charge.
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This Way, the excited Wakefields in a Half or a Quarter of the Structure are the same as
if the Charge has traveled in a full Structure.

shape:
The Shape of the Linecharge. Possible Values are gaussian, triangular and table.

tablefile:

The Filename of a Shape-Table. If a Tablefile is given, that Data is taken to describe the
Charges Shape. The total Charge as described in the Table is ignored, only the Shape as
described in the Table is used. The Parameter sigma is then ignored.

xtable:
Scale Factor to apply to the Position Values in the Table.

sigma:
The Width of the Gaussian Linecharge or the Width of the Triangle.

isigma:

This Parameter is used to control how long the Gaussian Linecharge shall be considered
Nonzero. For a Computation with -windowwake it might be useful to specify isigma=3.
Then, the Length of the computational Window extends from -3*isigma before the Center
of the Charge up to shigh behind the Center of the Charge.

xposition, yposition:
The Position of the Linecharge in the x-y-Plane.

direction:
The Direction of Flight of the Linecharge. The standard Value is '+z’ and that is the
Value to use for computing Wakepotentials.

soffset:
The s-Offset of the Linecharge. Given in Metres. A larger Value for soffset has the Effect
that the Charge travels later through a given z-Plane.

shigh:
The s-Coordinate of the last Wakepotential wanted. Possible Values are ”auto” or a
positive Real. If "shigh= auto”, a Value of 720 * sigma” is taken.

showdata= [yes|no]:
If ”yes”, some diagnostic Plots concerning the Wakepotential are shown when the Time
Domain Computation starts.

napoly= [yes|no]:

If napoly= yes, near the z-Borders of the computational Volume, an Integration of the
Wakefield similiar to the Napoly-Integration is performed. This Option should be set to
napoly= yes for scraper-like structures. One can keep the Option set even if it is no
needed, as GdfidLi checks whether such an Integration is useful. If it is not, it is not done.

ignoretem= [yes|no]:
Should be "yes” for Wx, Wy. When ignoretem=yes, the Term proportional to the primary
Field of the exciting Charge is ignored.
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e nextcharge:
Stores the current Data and enables Editing of the Parameters of the next Linecharge.

Example

The following specifies that we want to model a Linecharge travelling with the Speed of Light
along the Axis (x,y)=(0,0). The total Charge of the Linecharge shall be 1 pC, and its Gaussian
Width sigma shall be 1 mm. We are interested in s-Values up to 100 mm.

—-lcharge
xpos= 0
ypos= 0

charge= le-12
sigma= le-3

shigh= 100e-3
Example

An Example for a Table File describing a Charges Shape is given below.

# —lcharge

# shape= table, tablefile= Bunchl.txt

# xtable= le-6, charge= le-12

#

# Everything behind a ’#’ is ignored.

# Lines in the Tablefile may be empty, or they may
# contain two (or more) Numbers.

# The first Number is a Position, the next Number is
# a relative Charge. What follows behind these two Numbers is ignored.
#

# bunchl (linac entrance)

# s[microns] Charge
o
0, 0

1 -1.32067

2 -1.10711

3 -0.894051

4 -0.6815

5 -0.469454

6 -0.25791

7 -0.046869

8 0.16367

9 0.373709

10 0.583247
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Example

An Example how to specify four Line-Charges that excite mostly quadrupole-Wakepotentials:

define (CHARGE, 1le-12) define(SIGMA, 1e-3)
define (RADIUS, SomeValue)

define (RADIUS0SQRT2, RADIUS * (2%x0.5) ) # Radius * Cos( 45 Degrees )
-lcharge
xposition= RADIUSoSQRT2, yposition= RADIUSoSQRT2
charge= CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= -RADIUSoSQRT2, yposition= RADIUSoSQRT2
charge= -CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= -RADIUSoSQRT2, yposition= -RADIUSoSQRT2
charge= CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= RADIUSoSQRT2, yposition= -RADIUSoSQRT2
charge= -CHARGE, sigma= SIGMA, soffset= 0

Example

/usr/local/gdl/examples-from-the-manual/quadrupole.gdf

This Device has two Planes of Symmetry.

These Planes of Symmetry are NOT used here.

Four Charges are specified such that

the excited Wakefields are mainly quadrupole Wakefields.

H OH B H H H

-general,
outfile= /tmp/UserName/bla
scratch= /tmp/UserName/scratch

define( A , 2%0.038 )
define( A2, 2%x0.016 ) # x-Width

define( B , 2%0.010 ) # y-Width
define( B2, 2*0.002 )

define (RANGE, 0.01)

define (STPSZE, B/100 )

-mesh
spacing= STPSZE
pxlow= -(A/2+STPSZE), pxhigh= (A/2+STPSZE), cxlow= ele, cxhigh= ele
pylow= -(B/2+STPSZE), pyhigh= (B/2+STPSZE), cylow= ele, cyhigh= ele
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pzlow= -0.02, pzhigh= 0.02

#Hi S
-material, material= 3, type= electric

# Fill the Universe with Metal:
-brick
material= 3
xlow= -INF, xhigh= INF
ylow= -INF, yhigh= INF
zlow= -INF, zhigh= INF
doit

do ii= 1, 2

# The Device also has a Plane of Symmetry at z=0.

# Half of the Device is modeled here, and that Half
# 1is rotated and translated to the wanted Position
# and Orientation.

—-transform, reset
if (ii == 1) then

-translate, offset= ( 0, 0, -(0.01+RANGE+0.005/2) ), doit
else

-rotate, axis= ( 0, 1, 0 ), angle= 180, doit

-translate, offset= ( 0, 0, O0.01+RANGE+0.005/2 ), doit

end if
-ggcylinder
material= 0
xprime= ( 1, 0, 0 )
yprime= ( 0, 1, 0 )
xslope= 0, yslope= O # Re-Set to the Default Values
xscale= 1, yscale= 1 # Re-Set to the Default Values
clear
point= ( 0 , -B /2 )
point= ( A2/2, -B /2 )
point= ( A /2, -B2/2 )
point= ( A /2, B2/2)
point= ( A2/2, B /2 )
point= ( -A2/2, B /2 )
point= ( -A /2, B2/2 )
point= ( -A /2, -B2/2 )
point= ( -A2/2, -B /2 )
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origin= ( 0, 0, 0 )
range= ( 0, 0.01 )
doit  # The wide and straight Part.

# Same Cross-section, linear slopes:
xslope= (0.033/0.038-1)/RANGE
yslope= (0.011/0.012-1)/RANGE
origin= ( 0, 0, 0.01 )
range= ( 0, RANGE )

show= later
doit # The tapered Part.

# Same Cross—-section, scaled
xslope= 0, yslope= O
xscale= 0.033/0.038, yscale= 0.011/0.012
origin= ( 0, 0, 0.01+RANGE )
range= ( 0, 0.005 )
if (ii == 1) then
show= later
else
show= all
end if
doit # The narrow and straight Part.
end do

-volumeplot, doit
-mesh, perfectmesh= no
HEHHAH S HH
-ports
name= Lower, plane= zlow, modes= 0, doit
name= Upper, plane= zhigh, modes= 0, doit
HEHHAH S HH
define (CHARGE, 1e-12) define(SIGMA, 1e-3)
define (RADIUS, B/10)
define (RADIUSoSQRT2, RADIUS * (2%x0.5) ) # Radius * Cos( 45 Degrees )
—-lcharge
xposition= RADIUSoSQRT2, yposition= RADIUSoSQRT2
charge= CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= -RADIUSoSQRT2, yposition= RADIUSoSQRT2
charge= -CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= -RADIUSoSQRT2, yposition= -RADIUSoSQRT2
charge= CHARGE, sigma= SIGMA, soffset= 0
nextcharge
xposition= RADIUSoSQRT2, yposition= -RADIUSoSQRT2
charge= -CHARGE, sigma= SIGMA, soffset= 0
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Figure 1.31: A Device with three Planes of Symmetry. The Planes of Symmetry at x=0 and y=
0 could be used with a Computation with Linecharges. This is not used here. Four Charges are
specified such that mainly quadrupole-Wakefields are excited.

shigh= 10 * SIGMA

-fdtd, doit
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GdfidL, Wakepotential

Potential in Beam Pipe at s= 1.2565e—6[m]

-0.01-

-0.01 0 0.01
X [m]

L L L
—-0.0399 -0.03 -0.02 0.02

Figure 1.32: The Wakepotential as a Function of (x,y) near s=0. The Input for gdl.pp was:
-gen, inf @last, -wakes, watsi= 0, doit

1.8.6 -fdtd,-windowwake: Wakepotential in a moving computational
Window

Here you specify the Properties of a computational Window which flies with the Velocity of
Light synchronously with the exciting Charges.

HHH S

# Flags: nomenu, noprompt, nomessage, #
AR
# Section: -windowwake #

S S

# strangsplitting= yes #
# fdtdorder= 31 -- What Order of FDTD Algorithm to take [1,31] #
# periodic = no —-- Assume periodic Device. #
# nperiods= 100 -- Maximum Number of Periods to consider. #
# modstore= 10 -— Store Wakepotentials after simulating #
# -—  Multiples of modstore*(pzhigh-pzlow) . #
B L R L R R B L R R R B R e | L L L e e R L R RIS IR R A
# doit, 7, return, help #

HHHHHH A R R R

e strangsplitting:
Possible Values are "yes, no”.
If strangsplitting=yes, a Scheme with splitted Updates for the z-transverse Components
and z-longitudinal Components is used. This Scheme has negligible Dispersion Error for
TEM-waves propagating in z-Direction. The Dispersion Error for other Kind of Waves is
comparable to a first order FDTD Scheme.

e fdtdorder:
Possible Values are [1,31].
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If strangsplitting=no, and fdtdorder=1, the normal FDTD Algorithm is used to ad-
vance the electromagnetic Fields. If strangsplitting=no, and fdtdorder=31, a modified
FDTD Algorithm is used to advance the electromagnetic Fields. That Scheme has zero
Dispersion for Waves going in x- or y- or z-Direction and less Dispersion-Error than strang-
Splitting for all Kind of Waves.

e periodic:
Possible Values are "yes, no”.
If periodic= no, the Length of the Geometry as specified via
-mesh, pzlow= ZLOW, pzhigh= ZHIGH is used for computing the Wakepotential.
If periodic= yes, the Length of the Geometry as specified via
-mesh, pzlow= ZLOW, pzhigh= ZHIGH is assumed to be one Period of a finite periodic
Structure with Number of Periods given by nperiods= NP. After computing the Fields
in a Multiple of modstore= MP periods, the Wakepotentials so far are recorded to the
Database.

e nperiods= NP:
Number of Periods to compute when periodic=yes.

e modstore= MP:
At which Periods to store the intermediate Results.

The Parameters of the exciting Linecharge are taken from the section -1charge. The moving
computational Window has a Length of isigma*sigma + shigh. The used Grid-Spacing in z is
the Minimum of all the x-Spacings and y-Spacings and, if the specified ”zspacing” in Section
”-mesh” is smaller, then that zspacing is used.

Napoly-like Integration is performed, and cannot be switched off.

The Memory Requirement is proportional to the Length of the moving computational Win-
dow, i.e. proportional to isigma*sigma + shigh. One should not specify a large Value for shigh,
in particular not longer than the structure Length, otherwise a conventional Wakepotential
Computation is more economic.

The CPU Requirement is proportional to the Length of the moving Window times the Length
over which the moving Window must travel. That Length is the z-Extension of the Structure
plus the Length of the Window. The CPU Requirement is proportional to (isigma*sigma -+
shigh) * (pzhigh-pzlow + isigma*sigma + shigh). Any specified Port is ignored. The x- and y-
Extension of the computational Volume must be specified large enough that Reflections from the
x- and y-Borders cannot change the Wakepotentials. E.g. Waveguides going in x- or y-Direction
should be modeled with a Length of ”"shigh”.

The Losses of Materials with type=impedance and of Materials with type=coating are taken
into Account.

The Losses of dielectric Materials are ignored.

Only Fields specified via fexport will be exported.

The only other Result is the Wakepotential.

Example
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The following specifies that we want to compute the Wakepotential of a Linecharge travelling
with the Speed of Light along the axis (x,y)=(0,0). The total charge of the Linecharge shall be
1 pC, and its Gaussian Width Sigma shall be 1 mm. We are interested in s-Values up to 20 mm.

-lcharge
xpos= 0, ypos= 0
charge= 1le-12

sigma= le-3
shigh= 20e-3

-windowwake
doit
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1.8.7 -fdtd,-clouds: Properties of nonrelativistic Clouds of Charge

This Section enables the computation with nonrelativistic Cloud Charges. As of today (October
2004) this PIC Computation is not yet fully finished. Since the planned Computations are not
yet fully implemented, we do not even document the Usage of what is available. What is available
is the Ejection of Clouds of Charge, the Computation of the induced electromagnetic Fields of
these Charges, and the integration of the Lorentz-Forces on these Clouds.

If a "Particle in Cell” Computation is badly needed, contact Warner Bruns Field Computa-
tions. It might be that by the Date that you read this, what you need is already available.

HUHH A R R

# Flags: nomenu, noprompt, nomessage, #
S T T s s
# Section: -clouds #
G s
# box = no #
# fraction = 0.990 #
#  Dbverbose = no #
# ejectioncommand= -none- #
# ejectionsubroutine= -none- #
# #
# #
S L s
# 7, return, help #

HUHH A R R R
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1.8.8 -fdtd,-linitialfields/ -eigenvalues,-linitialfields: Specifies the ini-
tial Fields

This Section enables the loading of initial Fields for a Time Domain Computation or a lossy
Eigenvalue Computation. If no initial Fields are specified, the initial Fields will be assumed to
be Zero for Time Domain Fields and random Fields for Eigenvalue Computations.

The initial Field is the Sum of the specified Fields.

B L R L R L B L L L R L B B R | L L L e L R RIS IR R R A
# Flags: nomenu, noprompt, nomessage, #
A R R R R R R
# Section: -linitialfields #
B L R L R L B L L L R R L B R | L L L e e L R RIS IR R A
# infile = ./previous_outfile
# symbol = e_1

quantity = e

solution = 1

factor 1.0

torealpart= yes

static = no

brz = no

H OH H H OH OH R

Xmirror= none

# ymirror= none

# abstatic = 0.0

# nbstatic = ( 0.0, 0.0, 1.0 )
HHFHRH R R R
# doit, 7, return, end, help #
e R R R R R R R R B B

H OH HF H O O H H HF H HH

e infile= NAME_OF_A_PREVIOUSLY_USED_QOUTFILE:
The Name of an "outfile” of a previous Computation. The Grid of that previous Compu-
tation must be compatible with the Grid of the current Computation. The easiest Way to
achieve this, is to load the Geometry for the current Computation from the same infile
via the Section -lgeometry.

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the ”symbol”, the Index of the ”symbol”.

e factor:
The Factor by which the specified Field shall be multiplied, before it is added to the
specified Fields so far.

e torealpart:
When performing a lossy Eigenvalue Computation, the Field can be put to the real Part
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or the imaginary Part of the Start-Vector. This Parameter is ignored for Time Domain
Computations.

static:

If static= yes, the loaded Field will only be used to accelerate or deflect free moving
Charges in the PIC-algorithm. If static= no, the loaded Field will be used as Part of the
initial Condition for the electromagnetic Field.

brz:
Special Flag for loading a rotational symmetric magnetostatic Field. Ignore it. Only for
PIC-Computations.

abstatic:
Only for PIC Computations: Amplitude of a uniform static magnetic Field.

nbstatic:
Only for PIC Computations: Direction of a uniform static magnetic Field.

doit:

The Properties of the specified Field are recorded in an internal Database. When the
Time Domain or lossy Eigenvalue Computation starts, the Sum of all specified Fields will
be used as initial Field.
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Example

The following specifies that we want to use the Grid of a previous Computation, that we want
to load the electric Field of the first Mode of that same previous Computation with a Factor of
'1’. In Addition, we want to load the magnetic Field of the same Mode with an Amplitude of

-1". If the two Fields come from a resonant Field Computation, this has the Effect of loading
the Mode with a Phase of -45 Degrees.

#

# As the Filename in two Places better be the same,
# We define the Files Name as a Variable.
#
sdefine( INFILE, /tmp/UserName/resonant-computation )
-lgeometry
infile= INFILE
-linitialfields
infile= INFILE
symbol= e_1, factor= 1, doit
symbol= h_1, factor= -1, doit
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1.8.9 -fdtd,-voltages: Voltage Sources between selected Points

During a Time Domain Computation (with a static Mesh, i.e. not windowwake), Voltages
along Paths can be specified and measured. The recorded Data can by analysed by gd1.pp’s
-voltages section.

HUFHH A R R R

# Flags: nomenu, noprompt, nomessage, #
HERFHHBHHHBHHH B H B H B RAH R RS HRAHHBRH R H BB H RS H ARG HBA SRR R
# Section: -voltages #
HAHHHHAHHBHBHHAHHBHBHHAF R HAH RS HAH B HAH B HBHBHBRHAH RS HAH RS HAH SR GRS RSHEH RS HAH
# startpoint = ( 0.0, 0.0, 0.0 ) #
# endpoint = (0.0, 0.0, 0.0 ) #
# resistance = 0.10 -- [Ohm] #
# inductance = 0.0 -- [Henry] #
# amplitude = undefined -- [V] #
# phase = 0.0 -- [Degs] #
# frequency = undefined -- [1/s] #
# bandwidth = undefined -- [1/s] #
# risetime = undefined -- [s] #
# logcurrent = yes #
# name = noname-001 #
HAHHHHAHHBHBHHAHHAHBHHAHHBHAH RS HAH B HAH B HBHBHBRHAH RS HAH RS HA R HBH SRS H AR RS HAH
# doit, 7, list, return, help #

HERFHHBHHHBHHH B H B H B RAHHBFH B HBRH RS H B H RS H ARG FH R

e startpoint, endpoint:
Startpoint and Endpoint of the Path. The Voltage is applied between these two Points.

e resistance:
Inner Resistance of the Voltage Source.

e inductance:
Inner Inductance of the Voltage Source.

e amplitude, phase, frequency, bandwidth:
The Amplitude, Phase, Centerfrequency and Bandwidth of the Voltage Source.

e risetime:
If specified Nonzero, the Voltage Source is switched on. Between Zero and risetime, the
Voltage is switched on according to the Formula:

£(£) = (1 — cos(nt/T))/2 (1.6)

e logcurrent:
Whether the Current through the Voltage Source shall be monitored.

e name:
The name of the Voltage Source.
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e doit:
The Data of the current Voltage Source is stored and the next Voltage Source can be
specified.

If Voltage Sources are specified, the electric Field Strength between the Startpoint and End-
point is measured while the Time Domain Computation is running. The Difference between
the specified Voltage and the so measured Voltage is multplied by the Resistance of the Voltage
Source. That Value is used as Current which is enforced to flow between the starting Point and
Endpoint. The Current is low pass filtered with a time Constant given by 7 = R/ L.

The Values of the wanted Voltage, the measured Voltage and the Current can be inspected
in the Postprocessor.

No Example yet.
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1.8.10 -fdtd,-decaytime: Z-dependent damping Factor

During a Time Domain Computation (with a static Mesh, i.e. not windowwake), the Fields can
be damped with a z-dependent damping Factor.

HUFHH AR R R R

# Flags: nomenu, noprompt, nomessage, #
T L s s
# section -decaytime #
B L L L R R L R L L L R R L I B R R e R R IR BRI R R R IR
## syntax: #
# point= (Z_i, Tau_i) #
T T s
# clear, show, doit, 7, return, help #

HUFHH A R R

e point:
Specifies the next Point of the polygonal Description of the z-Dependency of the Decaytime.

e clear:
Clears the polygonal Description.

e show:
Gives a Plot of the polygonal Description.

Example

-fdtd

define(FREQR, 12e9)

—decaytime
clear
point= ( -INF, 6000 / (@pi*FREQ) )
point= ( Zmin, 6880 / (@pi*FREQ) )
point= ( Zmax, 6580 / (@pi*FREQ) )
point= ( INF, 6000 / (@pi*FREQ) )
# show
doit
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1.8.11 -fdtd,-time: minimum / maximum Time, when to Store

In this Section one specifies the Time Parameters of a Time Domain Computation. Up to what
Time to simulate, when to stop etc.

B S R S s R

# Flags: nomenu, noprompt, nomessage, #
A R R R
# section -time #
A
# firstsaved = undefined #
# lastsaved = undefined #
# distancesaved = undefined #
# tminimum = undefined #
# tmaximum = undefined #
# decaytime = 1.0e+30 #
A R R R R
# amptresh = 3.0e-3 #
# dtsafety = 0.90 #
# ndt = auto #
# ___stopafter= 1.0e+30 -—- Force Stop after that Time. #
# ___evmax = undefined -- Dangerous. #
# ___dt = undefined -- Dangerous. #
A R R R R R
# return, help, 7 #

S S A

e firstsaved:
The first Time where the electric and magnetic Fields shall be stored to Files.

e lastsaved:
The last Time where the Fields shall be stored to Files.

e distancesaved:
The Time-Distance between Fields to be saved.

e tminimum= TMIN, tmaximum= TMAX:
The minimum and maximum Time to simulate. gd1 will simulate a minimum simulation
Time of TMIN and a maximum one of TMAX.

— For a broadband Computation: If after TMIN no Power is flowing through any Port,
the Simulation is stopped.

— For a monochromatic Computation (risetime /= 0): If after TMIN the Power flowing
through all Ports is stationary, the Simulation is stopped.

No matter what the Status of the Fields in the computational Volume is, after a simulation
Time of TMAX, the Simulation will be stopped.

e decaytime= 0OALPHA:
Specification of artificial Losses in the computational Volume.
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— OOALPHA:
Time (in Seconds) that the Fields (both E and B) decay by a Factor of 1/e.

The Reason for this Parameter is as follows: single.gdl calculates mostly in single Pre-
cision, with a relative Accuray of its internal Values of 10~7 for most Machines. With this
Machine Accuracy, it is not possible to calculate the Decay of high Q-Structures. If you
would fill your Volume not with Vacuum but with a Dielectric with a very low Conductivity
k, the Program would attempt to scale in every Timestep the electric Field with a Factor

of 2_: For low Values of x this Factor is so near to One that it cannot be represented

in single Precision as distinct from One.

With the specification of decaytime, the Fields (both E and B) in the entire Volume are
scaled by such a Factor, that after a simulation Time of 00ALPHA the Fields have decayed
by a Factor of 1/e.

If you have to calculate the Scattering Parameters of a Resonator with a known (not
too low) internal Q-value, e.g. greater than 1000, you can specify artificial Losses with this
Keyword and gd1 or single.gdl together with gd1.pp will calculate the proper scattering
Parameters.

amptresh= TRESH:

The Treshold Value for exiting the FDTD-Loop when performing a broadband Computa-
tion: When all Port-Amplitudes have decayed down to TRESH times the maximum of all
monitored Modes at all Times before, the Computation stops.

dtsafety:
The safety Factor for the Timestep.
gd1l computes the largest stable Timestep as

dtmax = \/ 4

”highest eigenvalue of the closed volume”
This is normally reliable and gives the minimum Number of Timesteps required for a

wanted simulation Time. If for some Reason you want to use a different Timestep, you
may change the Timestep by changing dtsafety. The used Timestep is
dt = dtsafety * dtmax .

ndt:
This enforces the used Timestep ”dt” to be such that ”dt” is smaller than the normally
used Timestep and that an integer multiple of ”dt” gives the Value of "ndt”.

___stopafter:
Enforces a Stop after computing so far. Not very useful. We needed it once.

__evmax:
If specified, ignores the Result of the Estimation of the highest Eigenvalue of the Curl Curl
Operator. The largest stable Timestep is then computed not from that Estimate but from
a highest Eigenvalue being ___evmax. NOT USEFUL. This is avaiable to test that the

Results of parallel and serial Computations are bitwise identical.

dt:

If specified, uses that Value as the Timestep. NOT USEFUL.
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Example

The following specifies that we want to simulate a minimum Timespan of 100 Periods of a
Frequency of 1 GHz. We are absolutely shure that after a Timespan of 1000 Periods the Fields
have decayed sufficiently, and we want to store the Fields between 10 Periods and 20 Periods,
in a Distance of 1/2 Period.

define (FREQ, 1e9)

tmin= 100/FREQ, tmax= 1000/FREQ
firstsaved= 10/FREQ, lastsaved= 20/FREQ
distance= 1/2/FREQ
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1.8.12 -fdtd,-storefieldsat: When to Store

Selected Fields can be stored at selected Times. This Section triggers the writing of full Fields.
If you want to monitor selected Components, or selected Fluxes, use ~-fmonitor or -smonitor.

HUHH AR R R S R

# Flags: nomenu, noprompt, nomessage, #
B R B S SR R RS B S S B B S
# Section: -storefieldsat #
B R e R R B R R e R R R e R R R R R
# name = noname-0001 #
# whattosave= both —-—- e-fields, h-fields, both, clouds, #
# -= jimpedance #
# firstsaved = undefined #
# lastsaved = undefined #
# distancesaved= undefined #

S
# doit, list, 7, return, help #
#HH S R S R S S

e name:
The Name to be used to identify the stored Data later. When you enter the Name of an
already defined Set, you can edit the Parameters for this already defined Set. When you
specify a Name of "name= a", the saved e-Fields are accessible later in the Post-Processor
under the Name "a_e_1" for the first stored Field. The first stored h-Field of the Set is
accessible as "a_h_1".

e whattosave:
Possible Values are e-fields, h-fields, both, clouds, jimpedance. The clouds
Value is for PIC-Computations, it specifies that only the Data of free moving Charges
shall be stored at the selected Times. If you have a PIC-Computation running, and you
have selected one of e-fields, h-fields, both, the Data of free moving Charges are
stored as well.

e firstsaved:
The first Time where the Datasets shall be stored to Files.

e lastsaved:
The last Time where the Datasets shall be stored to Files.

e distancesaved:
The Time-Distance between Datasets to be saved.

e doit:
Stores the current Data and enables the editing of the Parameters of a Set that is not yet
defined (a new Set).

e list:
Lists the Names of the already defined Sets.
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Example

The following specifies that we want to store both the electric and magnetic Fields in the
Timespan of 10 Periods to 12 Periods. The Distance shall be 0.1 periods. In the Timespan
between 20 Periods and 30 Periods we want to store only the electric Field. The Distance
between the saved fields shall be a quarter Period.

define(FREQR, 1e9)

-fdtd
-storefieldsat
name= a, what= both
firstsaved= 10/FREQ
lastsaved= 12/FREQ
distance=  0.1/FREQ
doit

name= b, what= e-fields
firstsaved= 20/FREQ
lastsaved= 30/FREQ
distance=  0.25/FREQ
doit

Example

The following specifies that we want to store the electric Fields every 100 HF-Periods. Every
100 HF-Periods the fields shall be stored with a Time Density of 1/8 Period.

define(FREQR, 1e9)

-fdtd
-storefieldsat
do ii= 100, 1000, 100
#
# This ’name= a-ii’ is expanded to eg. ’name= a-100’
#
name= a-ii, what= e-fields
firstsaved= 1ii /FREQ
lastsaved= (ii+1+1/8)/FREQ
distance= 1/8/FREQ
doit
enddo
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1.8.13 -fdtd,-fexport: Text-File Export of selected Fields at selected
Times

During a Time Domain Computation (also windowwake), the Fields can be stored at selected
Times. The written Files can be imported by other Programs, or they can be used to create
gif-Files and then mpeg-Files.

HUFHH A R R

# Flags: nomenu, noprompt, nomessage, #
HHHHHHHE A R R R
# Section: -fexport #

HUHH A R R

# outfile= noname-0001

# whattosave= e —-- e-fields, h-fields, honmat #
# firstsaved = undefined #
# lastsaved = undefined #
# distancesaved= undefined #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh = 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
B B B B R SR R RS B S S B B
# doit, 7, return, end, help #

HERFHHBHHH B H B H BB BAH R RS H R HBRH RS H BB H RS H RSB FH AR R

e outfile:
The Name of the File to write the Fieldvalues to.

e whattosave:
Specifies what Field shall be exported to File. If whattosave=honmat, the Values of H
on electric conducting Surfaces are written in a complicated special compressed Format,
which (probably) can only be read by gd1.pp’s section -3dmanygifs. The File-Format is
so complicated to keep the Filesizes small.

e firstsaved, lastsaved, distancesaved:
The first, last Time to store the Field, and the Distance between the Times when the Field
shall be stored.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a bounding Box. Only the Fields that lie within the Box are
written.

e doit:
While the Time Domain Computation is running, the Exportfiles are written. The Format
of the Files should be self-explanatory.
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Example

The following Inputfile is for performing a Wakepotential Computation with a moving Mesh
Window. During the Time Domain Computation, the magnetic Fields on the Boundaries shall
be exported as ASCII-Files.

define(STPF, 0.5) define(NP, 4) define(RADIUS, 1+1) define(GAP, 0.5)
define (PERIODE, 0.6) define(BEAMR, RADIUS/2) define(STPSZE, SIGMA/10/STPF)

define (DRADIUS, 2*STPSZE )
define( ZLOW, -(NP*PERIODE+BEAMR)/2 )
define( ZHIGH, (NP*PERIODE+BEAMR)/2 )
-general
outfile= /tmp/UserName/resultfile
scratch= /tmp/UserName/scratch

-mesh
pxlow= -(RADIUS+DRADIUS), pxhigh= (RADIUS+DRADIUS)
pylow= -(RADIUS+DRADIUS), pyhigh= (RADIUS+DRADIUS)
pzlow= ZLOW, pzhigh= ZHIGH

define (PZLOW, ZLOW)

define (PZHIGH, ZHIGH)

pxlow= 0, cxlow= mag
pylow= 0, cylow= mag
spacing= STPSZE

HHAHHHHHRHHH
-brick, material 1, volume (-INF, INF, -INF, INF, -INF, INF), doit

do ip= -(NP-1)/2, (NP-1)/2, 1
-gccylinder

material= 0, radius= RADIUS, length= GAP
origin= (0,0, ip*PERIODE-GAP/2)
direction= (0,0,1)

show= later
doit

enddo

-gccylinder
material= O, radius= BEAMR, length= INF
origin= ( 0, 0, -INF/2 ), direction= ( 0, 0, 1)
# show= all
doit

#HH##H#
-volumeplot, scale 1.8, plotopts -geometry 600x550+10+10, doit
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##H#H#
-lcharge

sigma= 0.1, charge= le-12, xposition= 0, yposition= 0
#
# The following large Value for shigh is chosen for getting a Movie
# of the full Structure.
#
shigh= ZHIGH-ZLOW

define(NDT, 0.5 * SIGMA / @clight)
-fexport
outfile= /tmp/UserName/H-onmat-
what= honmat
firstsaved= 1e-20, lastsaved= 1e20
distancesaved= NDT
bbxlow= 0, bbxhigh= INF
bbylow= 0, bbyhigh= INF
bbzlow= PZLOW+2*STPSZE, bbzhigh= PZHIGH-2*STPSZE
doit

-windowwake,
doit
end
HEHHHHHHHHAHAHEHEHEHE

The following is Input for gd1.pp to read the Files and create many gifs from them. From
the gifs, a mpeg File is created and displayed.

# Input for gdl.pp:

-3dmanygifs
1stinfile= /tmp/UserName/H-onmat--000000001.gz
outfiles= /tmp/UserName/absh-
## uptonfiles= 10
#  what= abs
what= logabs
uptonfiles= 1e9
xrot= -30, yrot= 40
doit

system( mpeg_encode ./gdfidl.3dmanygifs-mpeg_encode-params )
system( mpeg_play -dither color fexported.mpg )
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1.8.14 -fdtd,-smonitor: Monitoring of scalar Quanitities

During a Time Domain Computation (with a static Mesh, i.e. not windowwake), the scalar Field
Quantities can be monitored.

S

# Flags: nomenu, noprompt, nomessage, #
HHFHEH R R
# Section: -smonitor #
e e R R B R R R R B B
# name = noname-001 #
# whattosave= convectioncurrent #
# -- convectioncurrent, displacementcurrent #
# -- magneticflux #
# -- poyntingflux, ppclouds, pnclouds #
# normal= z, cutat= undefined #
# xlow= -1.0e+30 , Xhigh= 1.0e+30 #
# ylow= -1.0e+30 , yhigh= 1.0e+30 #
# zlow= -1.0e+30 , zhigh= 1.0e+30 #
e e R R R R R R S R B B
# doit, list, 7, return, help #

HHH S

e name:
The Name to give to the scalar Quantity.

e whattosave:
Specifies what scalar Quantity shall be monitored.

e normal:
The Plane Normal of the Plane Section over which the Field shall be integrated to give
the scalar Quantity.

e cutat:
The Coordinate Value of the Plane in which the Plane Section is lying, over which the
scalar Quantity shall be integrated.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a bounding Box. Only the fields that lie within the Box are
integrated.

e doit:
The Parameters are saved, the Parameters of a next scalar Quantity can be entered.
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1.8.15 -fdtd,-fmonitor: Monitoring of Field Quanitities

During a Time Domain Computation (with a static Mesh, i.e. not windowwake), selected field
Quantities can be monitored.

HUFHH AR R R R

# Flags: nomenu, noprompt, nomessage, #
T L s s
# Section: -fmonitor #
B L L L R R L R L L L R R L I B R R e R R IR BRI R R R IR
# name = noname-001 #
# whattosave= ecomponents #
# —-- ecomponents, hcomponents #
# position= ( 0.0, 0.0, 0.0 ) #
B L L L R L R L L L R R L I B R e R R IR BRI R R R I
# doit, list, 7, return, help #

HUFHH A R R R

e name:
The Name to give to the Field Quantity.

e whattosave:
Specifies what Field Quantity shall be monitored.

e position:
The cartesian Components of the Location where the Field Quanity shall be monitored.

e doit:
The Parameters are saved, the Parameters of a next Field Quantity can be entered.
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1.8.16 -fdtd,-pmonitor: Monitoring of Power Quanitities

During a Time Domain Computation (with a static Mesh, i.e. not windowwake), selected Power
Quantities can be monitored.

S

# Flags: nomenu, noprompt, nomessage, #
A R R R
# Section: -PMonitor #

S R S A

# name = noname-001 #
# whattosave= pdielectrics #
# -- ( pdielectrics | energy ) #
# x1low= -1.0e+30 , Xhigh= 1.0e+30 #
# ylow= -1.0e+30 , yhigh= 1.0e+30 #
# zlow= -1.0e+30 , zhigh= 1.0e+30 #
# stride= 10 #
A RN R R
# doit, list, 7, return, help #

A i A

e name:
The Name to give to the Power Quantity.

e whattosave:
Specifies what Power Quantity shall be monitored.

e xlow=, xhigh=, ylow=, yhigh=, zlow=, zhigh= :
Specifies the Coordinates of a bounding Box. Only the Fields that lie within the Box are
integrated.

e doit:
The Parameters are saved, the Parameters of a next Power Quantity can be entered.
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Chapter 2

gdl.pp

gd1l.pp is the Postprocessor. gdl.pp loads the Data that is computed by gdl and displays

it. gd1.pp also computes Integrals over Fields, like Wall Losses and Voltages. Together with

the Macro Facility, this allows comfortable Computation of Figures of Merit like Q-Values and

Shunt-Impedances.

A Special Section (-sparameter) computes Scattering Parameters from the Amplitudes of Port-

Modes that were computed and stored by gd1.

Wakepotentials and Impedances are computed in the Section -wakes.

TouchStone-Files containing Scattering Matrices may be created in the Section -totouchstone.
Before you can do anything useful, you have to specify from what Database gd1.pp shall

take the Fields from. Therefore the first Thing you do is: enter the Section -general.
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2.1 -base

This is the Base Section of gd1.pp.

B R s S s R

# Flags: nomenu, noprompt, nomessage, #
HHHHHHEHEEEEEEEEEEEEE A S
# Section: -base #
# VshzpnIb 210929 #
A R R
# -general —-- Define Database #
# -3darrowplot -- Field Plots, Material Plot #
# -lineplot -- Lineplot of Field Components, #
# —-glineplot -- Lineplot of Field Comp along gline, #
# -2dplot -- Aquivalue Plot of a Component on a Plane. #
# —energy -- Compute stored Energy #
# -lintegral —-— Compute Voltages #
# -wlosses -— Compute Wall Losses #
# —dlosses —-- Compute dielectric Losses #
# —flux —-- Compute Fluxes through rectangular Areas #
# —clouds -- Properties of free moving Clouds #
# —sparameters -- Analyses Time History of Port Mode Amplitudes #
# -material -— Specify Conductivities for Loss Computations #
# -wakes -- Wakepotentials, Impedances #
# kkkkk Miscellanea s kkkkx #
# -totouchstone -- Convert fri-data to touchstone Form #
# -—combine -- Combines Scattering Parameters #
# -pcombine —-— Combines E & H to Poynting Field. #
# -—smonitor -- Display and fft smonitor Data #
# —fmonitor -- Display and fft fmonitor Data #
# -pmonitor -- Display pmonitor Data #
# -voltages -- Display and fft Voltages Data #
# -fexport -- Export 3D Field Data #
# -2dmanygifs -- #
# -3dmanygifs - #
# -debug -- Specify Debug Levels #
# #

R
# 7, help, end, 1s #
HtH

e —-general:
Branches to the -general Section, where you load the Database, where gd1 has written its
Data to.

e —3darrowplot:
Branches to the Section 3darrowplot, where you can plot 3D-Fields together with the
Material-Boundaries.
You can also plot the computed Portmodes that were used in a Time-Domain Computation.
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-lineplot:
Branches to the Section lineplot, where you can plot selected Components of 3D-Fields
along selected Lines. The Direction of these Lines must be in x-, y- or z-Direction.

-glineplot:
Branches to the Section glineplot, where you can plot selected components of 3D-Fields
along selected Lines in arbitrary Direction.

-2dplot:
Branches to the Section 2dplot, where you can plot selected Components of 3D-Fields over
a Plane as an Aequivalue Plot.

-energy:
Branches to the Section -energy, where you can compute the stored Energy in resonant or
time dependent Fields.

-lintegral:
Branches to the Section lintegral, where you can compute Line Integrals of Fields.

-wlosses:
Branches to the Section -wlosses, where you can compute Wall Losses from magnetic Fields
via the perturbation Formula.

-dlosses:
Branches to the section -dlosses, where you can compute dielectric Losses from electric or
magnetic Fields via the perturbation Formula.

-flux:
Branches to the Section -flux, where you can compute the Flux of a Field through a
rectangular Area.

—-clouds:
Branches to the Section -clouds, where you can analyse results of a PIC Computation.

—sparameters:
Branches to the Section -sparameters, where you can compute and Plot the scattering
Parameters from the Time-Domain Data that were computed by gd1.

-material:

Branches to the Section -material, where you may change the Conductivities of electric
Materials. These Conductivities are used for the perturbation Formula that is applied in
the Section -wlosses.

-wakes:

Branches to the Section -wakes, where you can compute longitudinal and transverse Wake-
potentials from Data that were recorded by gd1 during a Time Domain Computation with
a relativistic Charge.

-totouchstone:
Branches to the Section -totouchstone, where you may combine selected scattering Param-
eters to a full scattering Matrix which is then stored in TouchStone-Format.
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—-combine:
Branches to the Section -combine, where you can combine scattering Parameters of different
Devices to get the scattering Parameters of a combined Device.

—-smonitor:
Branches to the Section -smonitor, where you can analyse Results which were recorded via
-smonitor in a Time-Domain Computation.

—-fmonitor:
Branches to the Section -fmonitor, where you can analyse Results which were recorded via
-fmonitor in a Time-Domain Computation.

-pmonitor:
Branches to the Section -pmonitor, where you can analyse Results which were recorded
via -pmonitor in a Time-Domain Computation.

-fexport:
Branches to the Section fexport, where you can export 3DFields to ASCII Files.

-2dmanygifs, -3dmanygifs:
Allows Creation of Sets of GIF Files from Data exported from a Time Domain Computation
via -fexport.

—-debug:
This Section is for debugging GdfidL.
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2.2 -general

Here you specify what Resultfile shall be processed and where Scratchfiles shall be written to.

HUHH A R R R

# Flags: nomenu, noprompt, nomessage, #
g g
# Section: -general #
HHEH R
# infile= ./results #
# scratchbase= /scratch/wb//gdfidl-scratch-pid=000017428- #
# text( 1)= #

HERFHHBHHHBHHH B H B H B RAH R RS H B H R R RS H B H RS R H SRR H R R

# 2dplotopts= -geometry 690x560+10+10 #
# linecolor= 0 -— 0: foreground, 3: yellow #
# foreground= black -—- black, white #
# Dbackground= white —-- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
# nrofthreads= 20 -— SMP: Nr of Threads. #
B L L L R R L R L L L R R I B R R R R IR BRI R R R I
# 7, return, end, help, 1s #

HERFHHBHHHBHHH B H B H BB R RFH R H R R R H BB RAFH ARG FH AR R

e infile:
The Name of the Resultfile from gd1. ”infile= @last” is special: The Name of the last com-
puted ”outfile” is taken (this Value is read from the File SHOME /name.of last.gdfidl.file)

e scratchbase:
The Base Name of Scratchfiles that gd1.pp needs for its Operation. These will be mainly
Plotfiles. If you have an Environment Variable TMPDIR set, gd1.pp will take as default
Value set scratchbase to the String

$TMPDIR/gdfidl-scratch-pid=XXXXX-

Here $TMPDIR is the Value of the Environment Variable TMPDIR, and XXXXX is the Number
of the Process-ID of gd1.pp.

e text(*)= This Annotation-Text is plotted together with the Plots.
syntax:
text ()= ANY STRING, NOT NECESSARILY QUOTED
or
text (NUMBER)= ANY STRING, NOT NECESSARILY QUOTED

— ANY STRING, NOT NECESSARILY QUOTED:
The String to be included in the Plots.
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— NUMBER:
Optional. The Line-Number, where the Text shall be plotted.

In the first Case, without NUMBER, the String following text ()= is placed in the next
free Line. In the Case with NUMBER, it is guaranteed, that the String is placed in the
NUMBER.st Line. You can specify up to 20 Annotation-Strings, the maximum Length of
each Annotation-String is 80 Characters.

When a new Database is specified, the Values of text are overwritten by the Values that
are found in the Database.

2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:

gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

plotopts= ANY STRING CONTAING OPTIONS FOR gdl-3dplot:

gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

Example

The following specifies that we want to work with the Data that is generated by the last Run

of gd1. We want to have the Scratchfiles written into the Directory ’/tmp/garbage/’ and there
the Files shall be called ’delete-me-*". We want to have mymtv2 started with an X11-geometry
of 800x600. We want to have gd1.3dplot started with an X11-geometry of 1024x768.

-general

infile= Qlast

scratchbase= /tmp/garbage/delete-me-
2dplotopts= -geometry 800x600
plotopts= -geometry 1024x768
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2.3 -3darrowplot: Plots 3D Fields together with the Ma-
terial Boundaries.

This Section plots 3D electric or magnetic Fields. Also Portmodes can be plotted.
HHHHHHHH SRR HS RS R RS R R R R

# Flags: nomenu, noprompt, nomessage, #
g g
# Section: -3darrowplot #
B L L e L R R R L R L L L L R R L I B R R R R IR BRI R ST
# symbol =e_1l #
# quantity = e #
# solution =1 #
# phase = 45.0 —-— Only for Portmodes #
# arrows = 10000 #
# lenarrows = 2.0 #
# maxlenarrows= 2.0 #
# fcolour =4 #
# materials = yes -- (yes | no) #
# dielectrics = yes -- (yes | no) #
# fonmaterials= yes -- (yes | no) #
# logfonmat= no -- (yes | no) #
# fmaxonmat= auto #
# jonmaterials= no -- (yes | no) #
# scale = 2.80 #
# fscale = auto #
# nlscale = no, nlexp= 0.30 #
# eyeposition = ( -1.0, -2.30, 0.50 ) #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# rotx = 0.0000, roty = 0.0000, rotz = 0.0000 #
# clouds = yes —-- Show Clouds #
g g g
# plotopts= -geometry 800x668+410+40 -noclip #
# showtext = yes -- (yes | no) #
# showlines = no -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
g g
# Q@absfmax: undefined -- of fonmat or jonmat. #
# @farrowmax: undefined -- Value of largest Arrow. #
B L L L R R R R L L L L L R R L I B R R R R IR BRI R R ST
# doit, 7, return, end, help, 1s #

HERFHHBHHHBHHH B H B H BB H RS H B H R H R H BB RAF R H SR BAH R R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the ”symbol”.
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solution= ISOL:
This is the last Part of the ”symbol”, the Index of the ”symbol”.

component:
Possible Values are x,y,z,all. Only the selected Component will be plotted.

phase:

This Parameter is used only when you want to plot the Fields of portmodes. This specifies
the Phase of the Phasor to be shown. This seldom changes the Plot, as seldom the
Portmodes are really Complex.

arrows:
The Arrows that make up the Plot are distributed equidistant over the whole computational
Volume. The Number of Positions where an Arrow is possible is given here.

lenarrows:

The relative Length of the Arrows that make up the Plot. If lenarrows= 1, the Arrows
are scaled such, that for an homogeneous Field the Tip of one shown Arrow is just behind
the Bottom of the next Arrow.

maxlenarrows:
No Arrow shall be larger than this Value.
This is useful for Fields where a strong Field Concentration happens, e.g. Wakefields.

fcolour= :
The Colour Number of the Field Arrows.

materials= :
When yes, the Material Boundaries are plotted together with the Fields.

dielectrics= :
When dielectrics= no, Material Boundaries between dielectrics will not be shown.

jonmaterials= : (Joules on Materials)
A Flag that specifies whether the Colours of Material Boundaries shall be encoding the
absorbed Energy in Materials with type= impedance.

fonmaterials= : (Fields on Materials)
A Flag that specifies whether the Colours of Material Boundaries shall be encoding the
Field values near these Material Boundaries.

logfonmat= :
A Flag that specifies whether the Colours shall be assigned proportional to the logarithm
of the Field value.

maxfonmat= :

What Value shall be used as the largest Field on the Material Patches. No further Scaling
happens. This is useful for generating Movies, where every frame of the Movie should have
the same Colour Encoding.

scale= SCALE:
The initial zoom Factor of the resulting Plot.
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fscale:

If a Value # auto is specified, the Vectorfield is scaled by this Value. No further Scaling
happens. This is useful for generating Movies, where every frame of the Movie should be
scaled by the same Factor.

nlscale, nlexp:
If nlscale= yes, the Size of Field Arrows are proportional to the Amplitude of the Field
to the Power of nlexp.

eyeposition= (XEYE, YEYE, ZEYE):

This specifies the initial Eyeposition for the 3D Plot that will be produced. As soon
as the Plot appears, you can interactively change the Eyeposition with the Buttons of
gd1.3dplot, but for a complex Geometry, this may take some Time.

bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a Bounding Box. Only the Material-Boundaries and the Field-
Arrows that lie within the Box are plotted.

rotx= PhiX, roty= PhiY, rotz= PhiZ:

This specifies the Parameters of an additional Rotation Matrix. The Data is rotated around
the x-Axis by an angle of PhiX, then the Result is rotated around the y-Axis by an angle
of PhiY, and finally the Result is rotated around the z-Axis by an angle of PhiZ.

clouds= :
Selects, whether the Position free moving Charges shall be plotted together with the Field.

plotopts= ANY STRING CONTAING OPTIONS FOR gdl-3dplot:

gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

showlines= :
If yes, thin Lines are plotted around the material Patches, indicating the used Discretisa-
tion.

onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

doit:
The selected symbol is loaded from the database, the Plotfile is generated, gd1.3dplot is
started to display the Plotfile.
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Example

To generate a Plot of the first electric Field found in the Database, we say:

symbol= e_1
doit

Example

To generate a Plot of the real Part of the fourtht complex electric Field found in the Database,
with the Colours of the material Patches showing the Field strength at the Material Boundaries,
we say:

symbol= ere_4
fonmat= yes
doit

# only the Material Plot, without the Field-Arrows:

lena 1le-6
doit
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xext: ( —7.495E+07, 7.495E+07) . 29/09/2021, 18:00:00

yext: ( —7.495e+07, 7.495e+07) GdfidL, 3D Arrowplot

zext: ( —7.495E+07, 7.495E+07) * P V3.8 Wed Sep 29 2021 wb043
Ere 7, freq= 1.0277, acc= 469.0863e—6

fmax:  202.8182e-9 _ i

xext: ( —7.495E+07, 7.495E+07) . 29/09/2021, 18:00:20
yext: ( —7.495£+07, 7.495e+07) GdfidL, 3D Arrowplot V5.5 Wed Sew 20 2021 wb0A3
zext: ( ~7.495E+07, 7.495E+07) - P

Ere 7, freq= 1.0277, acc= 469.0863e—6
fmox:  202.8182e-9
=__207.8826e—-9
f= 182.2971e=9
f= 156.7115e-9
f=  131.1260e-9
f= 105.5404e-9
79.9549¢-9
54.3693e—-9

28.7837e-9

3.1982e-9

Figure 2.1: Above: Resulting Plot, with Field Arrows, and Material Patches coloured according
to the Field Strength at Material Boundaries. Below: The same Plot, without Field Arrows.
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Example

A Plot of the absorbed Energy in Materials with type=impedance: In the first Step, we
compute the Time Domain Fields with gd1:

gdl < DDBA_simple_button_racetrack_no_cavity_no_recess.gdf
That Inputfile specifies all metallic Materials as of type=impedance.

-material
material=
material=
material=

3, type= impedance, kappa= 1.3514e6 # button

5, type= impedance, kappa= 1.82e7 # pin

6, type= impedance, kappa= 1.3889e6 # anulus
material= 7, type= impedance, kappa= 4.561e7 # coax pin
material= 8, type= impedance, kappa= 1.35e6 # block
material= 9, type= impedance, kappa= 1.59e7 # coax outer

Fields at selected Times are stored.

# Store the e-Fields at selected Times.

# This will then also store the deposited Energy in
# ’type= impedance’.

# gdl.pp: -3darrow, jonmat= yes, symbol= Bla_e_1, doit
#

-storefieldsat

name= Bla, what= e
firstsaved= 0.1 / @clight
lastsaved= INF
distance= 0.1 / @clight

doit

After the Time Domain Computation has finished, we start gd1.pp with the Input:

-general, infile= Q@last

-3da
jonmat= yes
arrows= 1, lena= le-7 # No Arrows shown
symbol= Bla_e_3, doit

The resulting Plot of the absorbed Energy is shown in Figure 2.2.
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xext: ( —2.200E—02, 2.200E—02)
yext: ( 0.000E+00, 1.900E—02)
zext: ( —3.000E—-02, 3.000E—02)

29/09/2021, 18:31:33
v3.8 Wed Sep 29 2021 wb043

GdfidL, 3D Arrowp

fmax: 0.0000
f=  76.6892e—-6

f:[Joule/ms»2]
f=  67.2505e—-6
f=  57.8118e—-6

f=  48.3732e-6

f=  38.9345e—6

f= 29.4958e—6
f= 20.0572e—-6
f=  10.6185e-6

f= 1.1798e-6

by ]

Yol >)

sigma= 5.0e-3
charge= 1.0e-9

Figure 2.2: The coloured Material-Patches encode the absorbed Energy in the Materials with
type=impedance.
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2.4 -lineplot: Plots a Field Component along an Axis.

S S S A

# Flags: nomenu, noprompt, nomessage, #
A R R R R R
# Section: -lineplot #
D L R L R L L L L R R L L B R | L L L e R L R RIS IR R A
# symbol =e_1 #
# quantity = e #
# solution =1 #
# component = z #
# phase = 45.0 -- Only for Portmodes #
# #
# direction = z #
# startpoint= ( 0.0, 0.0, -1.0e+30 ) #

B R S s s s s s S s s S s R

# 2dplotopts= -geometry 690x560+10+10 #
# linecolor= 0 -—- 0: foreground, 3: yellow #
# foreground= black -- black, white #
# Dbackground= white —- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
B L R L R L L L R R B B | L L L e e R A BRI SRR R A
# doit, 7, return, end, help, 1ls #

B S R S S s s S s R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the ”symbol”, the Index of the ”symbol”.

e component= [x|ylz|]:
The wanted Component of the 3D-Field or Portmode to be plotted.

e direction= [x|ylz]:
The Direction along which the Component shall be plotted.

e startpoint= (X0, YO, Z0):
The Startpoint from which the Component shall be plotted.

e 2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.
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e showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

e onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

e doit:
The selected Symbol is loaded from the Database, the Plotfile is generated, mymtv2 is
started to display the plotfile.

Example

To specify the last computed Database as the Database, then to generate a Plot of the x-
Component of the electric Field of the third Field in the Database, starting from the lowest
z-Coordinate in the Grid, up to the highest z-Coordinate at the Position (x,y)= (0,0), we say
(using Abbreviations):

-gen, 1 Qlast
-linepl, sym e_3, comp x, dir z, sta (0,0,0zmin), do

In full Glory, without Abbreviations, this is:

-general
infile= Q@last
-lineplot
symbol= e_3

component= x

direction= z

startpoint= ( 0, O, @zmin )
doit
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2.5 -glineplot: Plots a Field Component along a Line.

B R s s s s s S s R

# Flags: nomenu, noprompt, nomessage, #
D L R L R R B L L R R | L L L e R L RIS S IRR E A
# Section: -glineplot #
D L R L R R B L L R R | L L L e R L RIS S IRR E A
# symbol =e_1l #
# quantity = e #
# solution =1 #
# #
# startpoint= ( 0.0, 0.0, -1.0e+30 ) #
# direction = ( undefined, undefined, undefined ) #
g s
# 2dplotopts= —-geometry 690x560+10+10 #
# linecolor= 0 -—- 0: foreground, 3: yellow #
# foreground= black -- black, white #
# Dbackground= white —- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #

HHH S
S S

# Q@gvreal= undefined Ogvimag= undefined @gvabs= undefined #
g s
# doit, 7, return, end, help, 1ls #

S S

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e startpoint= (X0, YO, Z0):
The Position from where the Lineplot shall be started. That Point must lie within the
computational Volume.

e direction= ( Xn, Yn, Zn ):
The Direction of the Line along which the Plot shall be generated.

e 2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.
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e showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

e onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

e doit:
The Plot is generated. Only the Component of the Field in direction will be plotted.
The Component is plotted as a Function of u.

The Lineplot is performed a Line

(2,9, 2) = (Xo, Yo, Zo) + u+ (Xu, Ya, Za)/\/ X2 + Y2 + 22

As a Sideeffect, the complex Voltage as seen by a Particle is integrated.

Umax

B 27 fu
v = 0/ f(u)exp<J Be ) du

B is fixed to f = 1, and f is the Frequency of the resonant Field. The Result of the
Integration is shown in the Menu. The Value of the Integral is also accessible as the
symbolic Variables @gvreal, @Qgvimag, @Qgvabs.

153



2.6 -2dplot: Plot a Field Component on a Plane

B S S s R

# Flags: nomenu, noprompt, nomessage, #
e R R R R R R R R B B
# Section: -2dplot #
HEHGHE RS R R R H R R R H R R T S
# symbol =e_1l #
# quantity = e #
# solution =1 #
# #
# component = z -- What Component to be plotted. #
# normal =z -— The Plane Normal of the Cut-Plane. #
# cutat = undefined —— The Coordinate of the Cut-Plane. #
# ncontourlines= 30 —— The Number of Contourlines. #
# fscale = auto #
# #

B S s S s S T s R

# 2dplotopts= -geometry 690x560+10+10 #
# linecolor= 0 -—- 0: foreground, 3: yellow #
# foreground= black -- black, white #
# Dbackground= white —- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
D L R L R R B L L R R | L L L e R L RIS S IRR E A
# doit, 7, return, end, help #

B R R s S T s R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e component:
What Component of the Field shall be plotted.

e normal:
The Plane Normal of the Plane to plot the Component in.

e cutat:
The Coordinate of the Plane to plot the Component in.

e ncontourlines:
The Number of Contourlines to plot.
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fscale:
The Scale Factor to apply to the Field before it is plotted. Only the Contourlines between
-1 and +1 of the scaled Field will be plotted. Useful for generating Movies.

2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:

gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

plotopts= ANY STRING CONTAING OPTIONS FOR gdl-3dplot:

gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

doit:
The selected Symbol is loaded from the database, the Plotfile is generated, mymtv2 is
started to display the Plotfile.
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2.7 -energy: Compute Energy in E or H Fields

In this Section you may compute the stored Energy for an electric or magnetic Field. The Result
of that Computation is stored in symbolic Variables that may be used e.g. for Computation of
user defined figures of Merit.

B S R S S s s S s R

# Flags: nomenu, noprompt, nomessage, #
B L R L R L B L L R R B | L L L e R L BRI SRR R R
# Section: -energy #
g s s s s
# symbol = h_1 #
# quantity = h #
# solution =1 #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# #
# #
# Ghenergy : undefined (symbol: undefined, m: 1) #
# Qeenergy : undefined (symbol: undefined, m: 1) #
B L R L R L B L L R R L L B B R | L L L e R L R RIS IR R A
# doit, 7, return, end, help, 1ls #

B S R S S s R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a bounding box. Only the Fields that lie within the Box are
used for integrating the Energy.

e doit: Performs the Computation. The specified Field is loaded from File and its Energy
density is integrated over the computational Volume.

If the integrated Field was an electric Field, the Result of the Computation is stored in
the symbolic Variable @eenergy. If the integrated Field was a magnetic Field, the Result
of the Computation is stored in the symbolic Variable @henergy.

The Energy for a magnetic Field is computed as:
1
Q@Qhenergy = — /,LLH2 dv (2.1)
2m
The Energy for an electric Field is computed as:

1
Qeenergy = I /5E2 av (2.2)
m
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The Time-Averaging Factor m is 2 for resonant Fields, and 1 for nonresonant Rields.

When you are computing resonant Fields without periodic Boundary Conditions, the Fields
that gd1.pp processes are the electric Fields at a Time t=0 and the magnetic Fields at a Time
t=T/4, where T=1/f. This means, you ’see’ both, the electric and magnetic Fields at a Time
where they are at a Maximum. To get the total stored Energy for resonant Fields, one has to
integrate (1/2)uH? + (1/2)eE? over the Volume at one instant Time. But E and H are not at
the same Time. They are offset by T/4. The Factor of 1/m, with m=2 for resonant Fields,
accounts for the Effect of integrating both the electric and magnetic Fields at their (time) Peak
Values.

When you are computing time dependent Fields, the Fields that gd1.pp (normally) processes
are electric and magnetic Fields at (almost) the same Time (almost, because there is a Time-
Offset of half of the used Timestep, but the used Timestep is very small). For time dependent
Fields, the electric and magnetic Fields are not at their Time-Peak Values, but more important,
the electric and magnetic Fields are at the same Time. The stored Energy can therefore be
expressed directly by integrating (1/2)uH?+(1/2)e E? over the Volume. No factor 'm’ is needed.

You cannot and do not need to specify that 'm’. gd1.pp does this for you.

Example

To compute the stored Energy in the first electric Field found in the Database, we say:

-energy, symbol= e_1, doit
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2.8 -lintegral: Computes Line Integrals

This Section computes the Integral

| Fexpljws/ (Beo) ds.

A R R R R
# Flags: nomenu, noprompt, nomessage, #
B L R L R L B L L R R L B | L L L e R L R RIS R R A
# Section: -lintegral #
A R RN R R R
# symbol =e_1l #
# quantity = e #
# solution =1 #
# #
# direction = z #
# component = z #
# startpoint= ( 0.0, 0.0, -1.0e+30 ) #
# (used) : ( ©x0: undefined, @y0: undefined, ©z0: undefined ) #
# length = auto #
# (@length) : undefined #
# beta =1.0 #
# frequency = auto -- [auto | Reall #
B L R L R L B L L R R L L B B R | L L L e R L R RIS IR R A
# Qvreal= undefined Ovimag= undefined Ovabs= undefined #
B L R L R L B L L R R L L B B R | L L L e R L R RIS IR R A
# doit, 7, return, end, help, 1ls #

B S s s s S s R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e direction= [x|ylz]:
The cartesian Direction along which the Integration shall be performed.

e component= [x|ylz]:
The cartesian Component that shall be integrated.

e startpoint= ( X0, YO, ZO ):
The Integration Range starts at this Position.

e length:
Possible Values are auto, or a real Number.
If length= auto, the Integration is performed from the Startpoint to the End of the
computational Domain (in direction-direction).
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e beta:
The Value of § in the Formula [ Fexp(jws/(5co)) ds. If you are interested in computing
[ F ds, then choose beta as a very large Number, say le+10.

e frequency:
If "auto", the Frequency is taken from the Dataset. If frequency is specified as a Number,
that Value is taken for the Integrand.

e doit:
The Integration is performed, the Results are shown in the Menu. The Value of the Integral
is also accessible as the symbolic Variables @vreal, @vimag, @vabs. The Length of the
used Integration Path is accessible as the Variable @length. The Coordinates of the used
Startpoint are accessible as @x0, @Qy0, @z0.
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2.9 -wlosses: Compute Wall Losses from H-fields

In this Section you may compute the Wall Losses that stem from the Induction of Surface
Currents from magnetic Fields. This is a Power Loss Perturbation Computation.

B S R S S s s S s R

# Flags: nomenu, noprompt, nomessage, #
B L R L R L L L L R L B | L L L e A R RIS R R A
# Section: -wlosses #
A R R R
# symbol =h_1 #
# quantity =nh #
# solution =1 #
# frequency = auto -- [auto | Reall] #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# #
# #
# @Gmetalpower : undefined [VA] (symbol: undefined) #
B L R L R L L L L R L B | L L L e R A RIS SRR R A
# doit, 7, return, end, help, 1ls #

B S s s S s s S s R

The Conductivities that are used in the Perturbation Formula may be changed in the Section
-material. The Result of the Computation is available as the symbolic Variable @metalpower.
The Wall Losses are computed as:

[ e =

The Integration is performed over all metallic Surfaces that would appear in a Plot as pro-
duced by the Section -3darrowplot. This implies, that Wall Losses are NOT computed for
electric Planes of Symmetry, since the Material on the Planes of Symmetry are not shown in
-3darrowplot.

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed. This Field has to be a 3D-H-Field.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e frequency:
If "auto", the Frequency is taken from the Dataset. If frequency is specified as a Number,
that Value is taken for the Integrand.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a Bounding Box. Only the metallic Surfaces that lie within
the Box are used for integrating the Wall Losses.
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e doit:
The Integration is performed, the Result is shown in the Menu. The Result is available as
the Symbol @metalpower for subsequent Calculations.
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2.10 -dlosses: Compute dielectric Losses

In this Section you may compute dielectric Losses. The Result of the Computation is available
as the symbolic Variables @muepower, @epspower. The dielectric Losses are computed as:
For electric Fields:

1 — —
— / E -k E dV = Qepspower [VA]
m
For magnetic Fields:
1 — —
— /H -k H dV = Qmuepower [VA]

The Integration is performed over the specified Volume. The time-averaging Factor m is 2 for
resonant Fields, and 1 for nonresonant Fields.

S

# Flags: nomenu, noprompt, nomessage, #
A R R R
# Section: -dlosses #
G s s S
# symbol =h_1 #
# quantity =h #
# solution =1 #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# #
# #
# Gmuepower : undefined (symbol: undefined, m: 1) #
# Qepspower : undefined (symbol: undefined, m: 1) #
A R R R
# doit, 7, return, end, help, 1ls #

S

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed. This Field has to be a 3D-Field.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISQOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Coordinates of a Bounding Box. Only the Fields that lie within the Box are
used for integrating the Losses.

e doit:
The Integration is performed, the Result is shown in the Menu. The Result is available as
the Symbol @epspower or @muepower for subsequent Calculations.
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2.11 -flux: Compute Flux of Fields through rectangular
Areas

In this Section you may compute the Flux of a Field through a rectangular Area.

HERFHHBHHHBHHH B H B BB R RS H R H R R H BB RAFH AR R

# Flags: nomenu, noprompt, nomessage, #
B L L L R R R R L L L R R I B R R R R IR BRI R R R IR
# Section: -flux #
g g g
# symbol = h_1 #
# quantity=h #
# solution= 1 #
# #
# normal = z - [xlylz] #
# cutat = undefined —-- Coordinate of the integration Plane #
# xlow= undefined , xhigh= undefined #
# ylow= undefined , yhigh= undefined #
# zlow= undefined , zhigh= undefined #
# ( used: @cutat : undefined ) #
# ( used: Oxlow : undefined , Oxhigh : undefined ) #
# ( used: @ylow : undefined , @yhigh : undefined ) #
# ( used: @zlow : undefined , @zhigh : undefined ) #
# @flux : undefined [undefined] #

HHHH S S S R S S S
# doit, 7, return, end, help, 1s #
HHHH S S R S S R S S S

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed. This Field may be a 3D-E-Field or
a 3D-H-Field.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e normal= [x|yl|z]:
The Plane Normal of the Surface through which the Flux Integration shall be performed.

e cutat= :
The "normal" Coordinate of the Area through which the Integration shall be performed.

e xlow= 7?7, xhigh= 77, ylow= 7?7, yhigh= 77, zlow= 77, zhigh= 77:
The Coordinates of the rectangular Area through which the Flux Integration shall be
performed.
If normal= x, the Values xlow= 7?7, xhigh= 77 are ignored.
If normal= y, the Values ylow= 7?7, yhigh= 77 are ignored.

163



If normal= z, the Values zlow= 7?7, zhigh= 77 are ignored.

The actually used Values will be slightly different from the specified ones. After doit, the
actually used Values will be accessible as the symbolic Variables

@cutat, O@xlow, @xhigh, @ylow, @yhigh, ©@zlow, @zhigh.

doit:

The Flux Integration is performed, the Result is shown in the Menu. The Result is available
as the Symbol @f1lux for subsequent Calculations.

If the integrated Field is an electric Field, the Result is

Qflux = //aoarﬁ - dF

If the integrated Field is a magnetic Field, the Result is

Qfluxr = //uourﬁ-dﬁ
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2.12 -clouds: Analyse Properties of free moving Charges

This Section is for analysing the Results of a Time Domain Computation with free moving
Charges.

HUHH A R R R

# Flags: nomenu, noprompt, nomessage, #
g g g
# Section: -clouds #
B L L L R R L R L L L R R L I B R R R R IR BRI R R R
# symbol = h_1 #
# quantity= h #
# solution= 1 #
# #
# position = no -- 3D Plot of Particle Positions #
#  showbox= yes —-— Show computational Box with 3D Plot #
# gamma = yes -— 2D Plot of Gamma #
# hgamma = yes -- 2D Plot of Gamma-density #
# ihgamma= 30 -- Number of hgamma Bins #
# current = yes -- 2D Plot of Q*Velocity #
# binwidth= b5 -- Bin-Width of Current Average / ChargeSize #
# normal = z -- Direction of 2D Plots (gamma, current) #
# phase = yes -- Plots of Velocities vs Position #
#  xphase = yes -- xVelocities vs xPosition #
#  yphase = yes -— yVelocities vs yPosition #
#  zphase = yes -- zVelocities vs zPosition #
# export = no -- Export raw Cloud Data #
# outfile= ./gdfidl-exported-clouds #

HERFHHBHHH B H B H BB BAH R RS R R H R HH AR H BB RAFH ARG H AR R

# 2dplotopts= -geometry 690x560+10+10 #
# linecolor= 0 -— 0: foreground, 3: yellow #
# foreground= black -— black, white #
# Dbackground= white -- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
B L L L R R L R L L L R R L I B R R R IR BRI R R R IR
# doit, 7, return, end, help, 1s #

HUFHH A R R R R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed. This Field may be a 3D-E-Field or
a 3D-H-Field or a Cloud-Dataset.

e quantity= QUAN:
This is the first Part of the ”symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.
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position= [yes|no]:
Specifies whether a 3d-Plot of the Position of the Clouds shall be produced.

showbox= [yes|no]:
Whether a Box indicating the computational Volume shall be plotted together with the
Clouds Positions.

gamma= [yes|no]
Specifies whether a Plot of the relativistic Factor Gamma of the Velocity of the Clouds
shall be produced.

hgamma= [yes|no]
Specifies whether a averaging Plot of Gamma shall be produced.

ihgamma= NUMBER

If hgamma= yes, specifies how many Bins of average Gamma shall be used for the hgamma-

Plot. The total normal-Extension of the computational Volume will be divided in ihgamma=NUMBER
equal Sections.

The Average of the Gamma of all Clouds within the Bins will be plotted.

normal= [x|ylz]
The Normal along which the hgamma Plot will be produced.

phase= [yes|no]
Plots Velocities versus Position.

export= [yes|no]
Writes the full Cloud Data to an ASCII File, whose Name is specified via outfile=WHATEVER.

2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:

gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

doit
The Symbol is loaded from File, the Plotfiles are generated and mymtv2 is started to
display the Plotfiles.
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2.13 -sparameters: Computes scattering Parameters from
Time Domain Data

HERFHHBHHHBHHH B H B H BB R EFH R H R R R H BB RAF R H AR BRA R R

# Flags: nomenu, noprompt, nomessage, #
HEHBHHAHHEHBHHAHHEHBHHAHHEHAH RS HAHBEH AR BHHBHBHBEHAH RS H AR RS HAHBHH GRS RS HBH RS HAH
# Section —-sparameter #
HAHHHHAHHBHBHHAHHBHBHHAH R HAH RS HAH B HAH B HBHBH B HAH RS HAH RS HA RS H GRS H SRR RS HAH
# ports = all #
# -- (all | LIST ) #
# modes = (1) -- (all | LIST ) #
# timedata = no --— ( yes | no ) #
#  tsumpower= no --— ( yes | no ) #
# tintpower= no -— ( yes | no ) #
# usample =5 —-— Undersample for t-Plots #
# showeh = yes -— show exh t-Plots #
# freqdata = yes -— ( yes | no ) #
# wantdf = auto -- ( auto | REAL ) #
# windowed = yes -— (yes | no ) #
# edgeofwindow= 0.70 -- At what Frac. start to apply Window #
#  fsumpower= yes -— (yes | no ) #
# magnitude= yes -— (yes | no ) #
# slog = no --— ( yes | no ) #
# xlog = no --— ( yes | no ) #
# fintpower= no -— (yes | no ) #
# phase = no -— ( yes | no ) #
# smithplot= no -— (yes | no ) #
# markerat= undefined -—- Want a Marker at .. in Smith-Chart #
# groupvelocity= no -— ( yes | no ) #
# fri = no -— ( yes | no ) #
# excdata = yes —-- Show the Data of the Excitation #
# upto = auto -- [s] ( auto | REAL ) #
# tfirst = 0.0 -- [s] #
# flow = auto -- [1/s] ( auto | REAL ) #
# fhigh = auto -- [1/s] ( auto | REAL ) #
# ignoreexc = no -— ( yes | no ) #
# details = no -— ( yes | no ) #

HUHH AR R R

# 2dplotopts= —-geometry 690x560+10+10 #
# linecolor= 0 -— 0: foreground, 3: yellow #
# foreground= black -- black, white #
# Dbackground= white -- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
B L L L R R L R L L L R R L I B R R R R IR BRI R R IR
# return, help, end, 1ls, clearmarkers, doit #

HERFHHBHHHBHHH B H BB RAH R H B H R H RS H BB RAF R RS RS H AR
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® ports:
Possible Values are all, or a List of Names of Ports.
If ports= all, the Time Domain Data of all Ports found in the Database are processed.
If ports is a List of Names, only the Time Domain Data of the Ports whose Names are
found in the List are processed.

e modes:
Possible Values are all, or a List of Mode-Numbers.
If modes= all, the Time Domain Data of all Modes of the selected Ports found in the
Database are processed.
If modes is a List of Mode-Numbers, only the Time Domain Data of the Modes with
Numbers in the List are processed.

e timedata:
If timedata= yes, the Time Domain Amplitudes of the selected Modes are plotted.

— tsumpower:
If 7yes”, the Sum of the Power of the selected Modes is computed as a Function of
Time.

— tintpower:
If 7yes”, the Sum of the Power of the selected Modes is computed as a Function of
Time and integrated over Time.

— usample= NN:
The undersampling Factor to use for Plots of Time Domain Data.

e freqdata:
If freqdata= no, no scattering Parameters are plotted.

— wantdf= DF:
The wanted Frequency Resolution of the computed scattering Parameters. If wantdf=auto,
the computed scattering Parameters have a frequency Resolution of just df =1 / sim-
ulated Time.
If wantdf=DF , the Time Domain Data are assumed to be Zero outside of the FDTD-
simulated time Range. These zero-padded time Signals within a time Range of DT
=1 / DF are FFTed, giving an apparent frequency Resolution of DF.

— windowed:
If "yes”, the Time Domain Data are multiplied by a Window-Function before FFT-
ing them. This damps the Ripples in the scattering Parameters when the Impulse
Response is not yet fully computed.

— edgeofwindow= FRAC:
The Fraction of the simulated Time, where the windowing Function shall start to
decay.
The applied Windowing Function is a Constant '1’ from t=0 to FRAC * T, where T
is the simulated Time. After FRAC * T, the windowing Function is

L[} 4 cg(p Lo FRACST |
o |T TV FRAC) + T
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— fsumpower:
If 7yes”, the Sum of the Power of the selected Modes as a function of Frequency is
computed and plotted.

— magnitude:
If magnitude= yes, the absolute Value of the scattering Parameters are plotted.

— slog:
If slog= yes, the Magnitude of the scattering Parameters are initially plotted in a
logarithmic Plot.

— fintpower:
If ”yes”, the Sum of the Power of the selected Modes as a Function of Frequency and
integrated over Frequency is computed and plotted.

— phase:
If phase= yes, the Phase of the scattering Parameters are plotted.

— smithplot:
If smithplot= yes, the scattering Parameters are plotted in a Smith-Plot.

— markerat= Fi:
Specifies that you want to have a Marker near the Frequency Fi in the Smith Plots.
You may specify an unlimited Number of Frequencies where you want Markers at.
— groupvelocity:
If groupvelocity= yes, the Groupvelocity is computed from the Phase. The Result
is only sensible for Transmissions.
— fri:
If fri= yes, the scattering Parameters are written in fri-Format to Files.

e excdata:
Whether the Data of the Excitation shall be plotted.

e upto:
Possible Values are auto or a Time-Value.
If upto= auto, the Time Data up to the last found simulated Time are considered for the
Fourier-Transforms.
If upto= TMAX, only the Time-Data upto the Time-Value TMAX are considered for the
Fourier-Transforms. This is useful, for the Case that a late Time Instability of the Time
Domain Computation has occured, and you want to know the scattering Parameters of a
shorter Simulation. THIS SHOULD NOT HAPPEN. IF YOU ENCOUNTER A LATE
TIME INSTABILITY, PLEASE SEND THE INPUTFILE WHERE THIS INSTABILITY
HAS OCCURED TO ”bruns@gdfidl.de”.
If "upto” is specified as a Value larger than the Time simulated by the FDTD-solver,
then the Time Values up to "upto” are filled up with Zeros. This has the Effect that
additional Frequency points are computed by FFTing the padded Data Set. The scat-
tering Parameters at the additional Frequency Points are interpolated from the primary
Frequency dependent Values by a sin(x)/x Interpolation. For such a Purpose, you should
better specify wantdf= DF.

e tfirst= TFIRST:
The Time Data lower than TFIRST are discarded and replaced by Zero.
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e flow:
If flow= auto, the lower Limit of the Frequency Range of the Plots is derived from the
Centerfrequency and the Bandwidth of the Excitation as they were specified in the Input
for gd1. If flow= FMIN, the lower Limit of the Frequency Range is FMIN.

e fhigh:
If fhigh= auto, the upper Limit of the Frequency Range of the Plots is derived from the
Centerfrequency and the Bandwidth of the Excitation as they were specified in the Input
for gd1. If fhigh= FMAX, the upper Limit of the Frequency Range is FMAX.

® ignoreexc:
If ignoreexc= yes, the Spectrum of the excited Mode is ignored. Instead, a flat Spectrum
is assumed. This is useful e.g. to compute the Coupling from an relativistic Charge to the
Port-Modes.

e details:
If yes, a lot of intermediate Data are plotted.

e 2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

e plotopts= ANY STRING CONTAING OPTIONS FOR gdl-3dplot:
gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

e showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

e onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

e doit:

The scattering Parameters are computed from the Time Domain Amplitudes of the Port-
Modes.

e clearmarkers:
If you say clearmarkers, the List of Markers which were requested via markerat is cleared.

Example

To Compute and Plot the scattering Parameters of only the first two Modes of the Ports
with Names Input, Output, we say:
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—sparameter
modes= ( 1, 2 )
ports= ( Input, Output )
doit

Example

In the first Step, we compute the Time Domain Amplitudes with gd1:
gdl < /usr/local/gdl/examples-from-the-manual/arndt.MTT90.p1854.figh.gdf

In the next Step, we start gd1.pp to compute the scattering Parameters from the Time Domain
Amplitudes, that were computed by gd1. The Input we give to gd1.pp is:

-gen, inf Qlast
-3da, sy e_1, scal 4.5, arr 5000, fonmat yes, doit
-spa, window yes, doit

window no, doit

The resulting Plots are shown in the Figures 2.3 to 2.13.
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xext: ( —3.000E-02, 3.000E-02) 29/09/2021, 18:12:29

ot e, Sy odfidL, 3D Arrowplot 4 e 20 nat o

E 1, t= 667.32653490e—12

fmax: 7.853%e+3

Figure 2.3: The Time Domain electric Field at an early Time.
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Wed Sep 29 18:12:49 2021

GdfidL, 1D-Plot

xlow1_out_1, windowed, edge= 0.70
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0+ r
1.0x10'° 2.0x10'°

frequency [Hz]

Figure 2.4: The computed Reflection when a Window has been applied.
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Figure 2.5: A computed Transmission when a Window has been applied.
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‘Wed Sep 29 18:12:49 2021

GdfidL, 1D-Plot
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Figure 2.6: A computed Transmission when a Window has been applied.
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Figure 2.7: A computed Transmission when a Window has been applied.
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Wed Sep 29 18:12:49 2021

GdfidL, 1D-Plot

xlow1_out_1, no window
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Figure 2.8: The computed Reflection when no Window has been applied.
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Figure 2.9: A computed Transmission when no Window has been applied.
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‘Wed Sep 29 18:12:49 2021

GdfidL, 1D-Plot

xhighl_out_1, no window
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Figure 2.10: A computed Transmission when no Window has been applied.
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Figure 2.11: A computed Transmission when no Window has been applied.
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GdfidL, 1D-Plot
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Figure 2.12: The Sum of the Squares of the computed scattering Parameters when a Window
has been applied.
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Figure 2.13: The Sum of the Squares of the computed scattering Parameters when no Window
has been applied.
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Example

This Example demonstrates the Usage of tfirst. A Computation with a relativistic Line
Charge is performed. The Device is a Button-Beam-Position-Monitor. Only a Quarter of the
Device is modeled. There are three Ports where Energy can flow away from the Button. The
TEM-Line which is connected to the Button, and the lower and upper Beam-Pipe. The Ampli-
tudes at these Ports is recorded when modes at these Ports is specified larger than Zero.

gdl < /usr/local/gdl/examples-from-the-manual/Button-LineCharge.gdf

The time Data of the Modes at the lower and upper Beam-Pipes are contaminated by the Passing
of the Beam through these Ports at small time Values. The Beam has significant Charge ie more
than le-7 than the Maximum, for times less than t = 8 x SIGM A/c for the lower Beam Pipe,
where it enters. The Beam reaches the upper Beam Pipe after At = (200 — Zmin)/c. The Input
for gd1.pp to create the following Plots (and some more Plots not shown) is:

-general,
infile= @last
scratch= ./Resultfile-
-3darrow, sy e_11, arr le4, lena 100, fonmat yes, scale 4, doit
-spa,
freqdata= no, timedata= yes, tintpower= yes, modes= all

ports= ( lower_end )

tfirst= 0, doit

tfirst= 8 * SIGMA / 3e8, doit
ports= ( upper_end )

tfirst= 0, doit

tfirst= ( @zmax - Qzmin + 8 * SIGMA ) / 3e8, doit
ports= ( bpmho )

tfirst= 0, doit
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xext: ( 0.000E+00, 9.000E—02) 29/09/2021, 18:16:50
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Figure 2.14: The Time Domain electric Field at an early Time.
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Figure 2.15: The computed Amplitude of the sixth Mode at the lower Beam-Pipe.
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Figure 2.16: The computed Amplitude of the sixth Mode at the lower Beam-Pipe, the time Data
while the Beam passes through the Port is replaced by Zeros.
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Wed Sep 29 18:17:46 2021

GdfidL, 1D-Plot
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Figure 2.17: The integrated Power of all Modes at the lower Beam-Pipe.
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Figure 2.18: The integrated Power of all Modes at the lower Beam-Pipe, the time Data while
the Beam passes through the Port is replaced by Zeros.

181



‘Wed Sep 29 18:17:46 2021

GdfidL, 1D-Plot
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Figure 2.19: The computed Amplitude of the sixth Mode at the upper Beam-Pipe.
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Figure 2.20: The computed Amplitude of the sixth Mode at the upper Beam-Pipe, the time
Data while the Beam passes through the Port is replaced by Zeros.

182



Wed Sep 29 18:17:46 2021

GdfidL, 1D-Plot

integrated power sum, ports= ( upper_end ), modes= all
5.0x10714 r T r T r T T T T

tegral sum(power) dt [Ws]

in
o
X
S
=
1
1

0.0x10°. T

I I I I
3.0x107° 4.0x107° 5.0x107° 6.0x107°

time [s]

I I
1.0x107° 2.0x107°

Figure 2.21: The integrated Power of all Modes at the lower Beam-Pipe.
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Figure 2.22: The integrated Power of the all Modes at the upper Beam-Pipe, the time Data
while the Beam passes through the Port is replaced by Zeros.
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GdfidL, 1D-Plot
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Figure 2.23: The integrated Power of all Modes at the BeamPositionMonitor-Port.
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2.14 -combine: Combines E- and H-Field to Poynting
Field

Help for section ”-pcombine”: A Poynting-Field is created by combining an E-Field and a H-
Field.
The real-Part of the Poyting Field

Re(S)= al*Re(E)*Re(H) - bl*Im(E)*Im(H)
The imaginary-Part
Im(S)= a2*Re(E)*Im(H) + b2*Im(E)*Re(H)

HERFHHBHHH B H B HBRHHH BB H R B H R HBRH R H B H RS H RGBSR R R

# Flags: nomenu, noprompt, nomessage, #
B L L L R R L R L L L R R L I B R R R R IR BRI R R SR
# Section: —pcombine #
g g g
# Re(S): alxRe(E)*Re(H) - blxIm(E)*Im(H) #
# Im(S): a2*Re(E)*Im(H) + b2*xIm(E)*Re(H) #
- ——— #

# .50

# .50

# .50

# .50

# eresymbol = ere_1
#  erequantity= ere

#  eresolution= 1

# eimsymbol = ere_1
# eimquantity= ere

# eimsolution= 1

# hresymbol = hre_1
#  hrequantity= hre

# hresolution= 1

# himsymbol = hre_1
# himquantity= hre

# himsolution= 1

# sresymbol = sre_1
#  srequantity= sre

#  sresolution= 1

# simsymbol = sim_1
#  simquantity= sim
#  simsolution= 1

B L L L R R L R R L L L R R I R R R IR BRI R R ST
# doit, 7, return, end, 1s #
g g

HOH H OH H OH OH HOH H H HH HHHHHHHHH

When both al and a2 are specified as zero, eresymbol is not referenced and so does not need to
be specified.
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When both bl and a2 are specified as zero, himsymbol is not referenced and so does not need
to be specfied.

When both bl and b2 are specified as zero, eimsymbol is not referenced and so does not need
to be specfied.

When both al and b2 are specified as zero, hresymbol is not referenced and so does not need to
be specified.

al, bl, a2, b2
The Factors by which the E-Field and H- Field is multiplied.

eresymbol, eimsymbol
The Names of the real and imaginary Part of the E-Field.

hresymbol, himsymbol
The Names of the real and imaginary Part of the H-Field.

erequantity, eimquantity, hrequantity, himquantity
The First Part of the Names of the E- andf H-Field.

eresolution, eimsolution, hresolution, himsolution
The Indices of the Fields.

sresymbol, simsymbol:
The Names as which the real and imaginary Part of the Poynting Field shall be stored.

srequantity, simquantity
The first Part of the Name of the Poynting Field.

sresolution, simsolution:
The Indices of the Poynting-Field.

doit:
The relevant E- and H-Fields are fetched from the Database, combined to give a Poynting
Field and the reslting Poynting-Field is put into the Database. specified ”outfile”.

Example

In the first Step, we compute the Time Domain Data with gd1:
gdl < /usr/local/gdl/examples-from-the-manual/arndt.MTT90.p1854.figh5.gdf

In the next Step, we start gd1.pp to combine the first stored E-Field and the first stored H-Field
to get the Poynting-Field. We display the resulting Field. The Input we give to gd1.pp is:

-gen, inf Qlast
-pcombine

#

Re(s)= al * Re(E) * Re(H) - a2 * Im(E) * Im(H)
al= 0.5, bl= 0, a2= 0, b2=0

eresymbol= e_1

hresymbol= h_1

sresymbol= s_1, doit

-3da, sy= s_1, doit

The resulting Plot is shown in the Figure 2.24.
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xext: ( —3.000E—02, 3.000E—02) . 20/09/2021, 18:12:49
yext: ( 0.000E+00, 8.400E—03) GdfidL, 3D Arrowplot V3.8 Wed Sen 29 2021 wbo43
zext: ( —1.200E-02, 1.200E—02) ' P

s 1, Re(Poynting)

fmax: 43.1224e+6

Figure 2.24: The Time Domain Poynting Field at an early Time.
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2.15 -material: Conductivities of electric Materials

This Section allows the Changing of the Conductivities of Materials with type= electric. These
Conductivities are used for estimating the Wall Losses in the Section -losses.

B S R S S s S

# Flags: nomenu, noprompt, nomessage, #
A R R R
# section -material #
B L R L R L B L L R R L B B | L L L e R L RIS R A
# material= 1 epsr....: infinity kappa = 58.0e+6 #
# type: electric xepsr: infinity xkappa = 58.0e+6 #
# yepsr: infinity ykappa = 58.0e+6 #
# zepsr: infinity zkappa = 58.0e+6 #
# muer....: 0.0 mkappa : 0.0 #
# Xmuer : 0.0 xmkappa: 0.0 #
# ymuer: 0.0 ymkappa: 0.0 #
# Zmuer: 0.0 zmkappa: 0.0 #
B L R L R L R R L L B R | L L L e R L RIS R A
# return, help, 1s #

S

e material
The Material Index of the Material whose Conductivity is to be changed.

e kappa
The electric Conductivity of the Material in MHO/m (1/Ohm/m).

e xkappa, ykappa, zkappa
The x-, y-, z-Value of an anisotropic Material. Only diagonal Kappa Matrices can be
specified.

In gd1.pp, the Values for type, epsr, muer, mkappa cannot be changed.

Example

To specify that Wall Loss Computations in the Section -wlosses shall use a Conductivity
of 30 x 10° for the Material *10’, we say:

-material
material= 10
kappa= 30e6
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2.16 -wakes: longitudinal and transverse Wakepotentials

This Section allows the Computation of longitudinal and transverse Wake Potentials from Data
that were computed by gdl. These Data are only recorded by gd1l when you did specify a
Charge in the Section -lcharge of gd1.

gd1 computes the Integral of the E, component along the outermost Paths where a Witness-
Particle can travel and stores the Result in the Database. Since from these Data the longitudinal
and transverse Wakepotentials everywhere in the Beam Pipe can be computed, you can specify
an unlimited Number of Positions (x,y) where you are interested in the Wakepotentials. The
(x,y) Position of the exciting Charge cannot be changed afterwards, though.

HERHHBHHHBHHH B H B H B BAH R RS H B HBRHH AR H BB H RS H ARG HBA R R

# Flags: nomenu, noprompt, nomessage, #
B L L L R R L R L L L L R R L I B R e R R B BRI R R R
# section -wakes #
g g g
# set = 0 -- What Dataset (windowwake only) #
# watq = yes —— Process all Wakes at Positions of Line-Charges #
# awtatq = yes -- Use the Average of the two nearest transverse Wakes #
# -- as the transverse Wakes at the Positions of Charges #
# impedances= no -- Compute Impedances. #
# wantdf = auto -- Wanted freq Resolution => SIN(f)/f Interpol. #
# window = yes -- Apply Hann-Window when computing Impedances. #
# fhigh = undefined -- fhigh of Impedances. #
# excitation= charge -- {charge|port}. #
# uselu= yes —-- Use Sparse LU-Factorisation (not MG). #
# niter = 4 -- nlter for MG #
# omega = 1.90 -- Omega for MG #
# Omega2= 1.30 -— Omega2 for MG #
# mgdetails= no —-— Show Number of its etc #
# uselowpass= no -- Use lowpass Filtering. #
# usehighpass= no -- Use highpass Filtering. #
# showchargemax= no —-- Show Value of Charge Maximum. #
# sbunchspectrum= no -- Show Spectrum of the Current(, when imp=yes). #
# centerbunch= yes —-— Shift Data. Bunch Center will be at s=0. #
# peroffset= no -- Scale Wx by x, Wy by y. #
# xyref = (0.0, 0.0) -- refpoint for 77atxy-Data #
# usexyref= no —-- Use refpoint? #
# clear -— Clears all the "w*at*" Values. #
# watxy = ( undefined, undefined) -- want wz(xi,yi,s), i= 1 #
# wxatxy= ( undefined, undefined) -- want wx(xi,yi,s), i= 1 #
# wyatxy= ( undefined, undefined) -- want wy(xi,yi,s), i= 1 #
# watsi = undefined -- want w(x,y,si), i= 1 #
# watxi = undefined -- want w(xi,y,s), i= 1 #
# liny= 20 —-— Number of Lines in y-Direction. #
# watyi = undefined -- want w(x,yi,s), i=1 #
# linx= 20 —-— Number of Lines in x-Direction. #
# wxatxi= undefined -- want wx(xi,y,s), i=1 #
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HOH H OH O H OH OH OH OH HE HOHHHEHE HHHEHH

wxatyi= undefined -- want wx(x,yi,s), i=1 #
wyatxi= undefined -- want wy(xi,y,s), i= 1 #
wyatyi= undefined -- want wy(x,yi,s), i= 1 #
istrides= 3 —— Distance of s-Points of the Plots #
-= in Units of "ds". #
slow = 0.0 —- Lowest s-Value to consider. #
shigh= undefined -— Highest s-Value to consider. #
watsfiles = -none-
xlowwats = -1.0e+30 #
xhighwats= 1.0e+30 #
ylowwats = -1.0e+30 #
yhighwats= 1.0e+30 #
frequency= undefined ( Qufrequency : undefined ) #
( @zxesrf: wundefined ) #
( @zxesrf: wundefined ) #
( @zxesrf: wundefined ) #
( @xloss : wundefined ) [VAs] #
( @yloss : wundefined ) [VAs] #
( @zloss : wundefined ) [VAs] #
( @charge: wundefined ) [As] #

B s s s s s S s R

#
#
#
#
#
#

2dplotopts= -geometry 690x560+10+10 #
linecolor= 0 -—- 0: foreground, 3: yellow #
foreground= black —-- black, white #
background= white —- blue, white, black #
showtext = yes -- (yes | no) #
onlyplotfiles= no -- (yes | no) #

e e R R R R R R R B B
# return, help, end, clear, doit #
HHRHSHHF R R RS HSEHHE R H R H R S R HEHHH R H R S R  H R R #

e set= NUMBER-OF-SET

For Results from -windowwake only. What Dataset to process. When a Computation
is performed with -windowwake, one can compute in a single Run the Wakepotentials of
different Numbers of periodic Sections of a periodic Geometry. The different Results are
call Sets. The Number of the Set to analyse is specified.

watq= [ yes | no |

watq stands for " Wake at Q-position”. If watq= yes, then the longitudinal and transverse
Wakepotentials at the x-y-Position of the exciting Charge are computed. You do not have
to specify this Position by yourself.

awtatq= [ yes | no |

awtatq stands for ” Average Wakes (transverse) at Q-Position”. In the Grid, the transverse
Wakepotentials are best defined just in between the Grid Planes. But the exciting Charge
can only travel along a Grid Line (the crossing Line of two Grid Planes). So the transverse
Wakepotential just at the Position of a Charge is not well defined.

If awtatq= yes, gd1l.pp computes the transverse Wakepotentials at the two Positions
between the Grid Planes that are nearest to the Position of the exciting Charge. The
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Average of the two Potentials are then assumed to be the transverse Wakepotential at the
Position of the Charge.

impedances= [ yes | no |
If impedances= yes, the Spectrum of Wakepotentials at Points (x,y) are computed and
divided by the Spectrum of the exciting Current.

window= [ yes | no |
If yes, a Hann-Window is applied to the Wakepotentials, before they are Fouriertransformed
to compute the Impedances.

fhigh= NUMBER

The upper Frequency of the Range to compute the Impedances in. If you do not specify
that Parameter, gd1.pp choses a Value such that at that Frequency, sufficient Energy is
in the Spectrum of the exciting charge, and that the Grid-Spacing is fine enough to resolve
the corresponding Wavelength.

uselu= [ yes | no |

Specifies that a LU-Decomposition shall be used to solve the linear Equations. If uselu=no,
the linear Equations are solved with an iterative Scheme, which requires less memory, but
much more time.

uselowpass= | yes | no |
If yes, the Wakepotentials are lowpass filtered in the s-Domain. The Upper-Frequency of
that Filter is about 0.9 times the highest possible Frequency in the Drid.

usehighpass= [ yes | no ]
If yes, the Wakepotentials are highpass filtered in the s-Domain.

showchargemax= | yes | no |
If yes, at the Maximum of the Charge in the Plots its numeric Value is written to.

centerbunch= | yes | no |
If yes, the s-Coordinate is shifted such that the maximum of the exciting Charge is at
s=0.

peroffset= | yes | no |
If yes, the transverse Wakepotentials and Impedances are plotted after scaling by their x-
and y-Positions.

xyref= (XREF, YREF)

usexyref= [ yes | no |

Specifies whether the transverse Wakepotentials shall be computed with Reference to the
Wakepotentials at (XREF, YREF). If usexyref=yes, the transverse Wakepotentials at
(XREF,YREF) are computed, and the other transverse Wakepotentials are plotted as eg.
We(x,u) — W (XREF,YREF).

clear
Clear the List of Positions where to plot Wakepotentials in Addition to the watq’s. See

191



the Explanation for watxy, wxatxy, wyatxy, watsi, watxi, watyi, wxatxi, wxatyi,
wyatxi, wyatyi below.

watxy= (Xi, Yi), wxatxy= (Xi, Yi), wyatxy= (Xi, Yi)

watxy, wxatxy, wyatxy stands for ” Wake at xy-Position, Wake in x at xy-Position, Wake
in y at xy-Position”. If you specify watxy= (Xi, Y1i), the longitudinal Wakepotential at
the Gridpoint nearest to the specified Position (Xi, Yi) will be computed. Similiar, when
you specify wxatxy= (Xi, Yi) or wyatxy= (Xi, Yi), the transverse Wakepotentials
at the Midpoints between Gridpoints nearest to the specified Position (Xi, Yi) will be
computed.

You can specify an unlimited Number of (x,y)-Positions where you want to know the
longitudinal or transverse Wakepotentials.

watsi= Si

watsi stands for ”Wake at S-Position”. If you specify watsi= Si, the longitudinal Wake-
potential in the whole (x,y) Region of the Beam Pipe at the s-Value Si will be computed
and plotted.

You can specify an unlimited Number of s-Positions where you want to have such Plot.

watxi= Xi, watyi= Yi watxi stands for ” Wake at x-Position”, watyi stands for ” Wake
at y-Position”, If you specify watxi= Xi or watyi= Y], the longitudinal Wakepotential
at the Position Xi, or Yi will be plotted as a Function of (y,s) or (x,s), respectively. These
Functions will be plotted with liny or linx Lines respectively.

You can specify an unlimited Number of y- or y-Positions where you want to know the
longitudinal Wakepotentials.

linx= LX, liny= LY
Number of Lines to use to Plot the Data requested with watxi= Xi, watyi= Yi.

wxatxi= Xi, wxatyi= Yi, wyatxi= Xi, wyatyi= Yi
wxatxi, wxatyi, wyatxi, wyatyi stands for "Wake in x at x-Position, Wake in x at
y-Position, Wake in y at x-Position, Wake in y at y-Position”.

If you specify wxatxi= Xi, the transverse Wakepotential in x-Direction will be plotted in
the y-s Plane at the x-Coordinate between Meshplanes nearest to Xi.

If you specify wxatyi= Yi, the transverse Wakepotential in x-Direction will be plotted in
the x-s Plane at the y-Coordinate between Meshplanes nearest to Yi.

If you specify wyatxi= Xi, the transverse Wakepotential in y-Direction will be plotted in
the y-s Plane at the x-Coordinate between Meshplanes nearest to Xi.

If you specify wyatyi= Yi, the transverse Wakepotential in y-Direction will be plotted in
the x-s Plane at the y-Coordinate between Meshplanes nearest to Yi.

You can specify an unlimited Number of y- or y-Positions where you want to know the
transverse Wakepotentials.

istrides= IS

Specifies the Distance of s-Values in the Plots requested via watxy, wxatxy, wyatxy,
watsi, watxi, watyi, wxatxi, wxatyi, wyatxi, wyatyi. These Plots contain a huge
Amount of Data when large s-Values are present. It may happen that mymtv2 needs a
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long Time to load these Datasets, and also there may be way too much s-Values in the
Plots. With a Value greater than 1 of this Parameter you can reduce the Information in
these Plots.

e slow= SLOW
The lowest s-Value to consider for the w?at??-Plots.

e shigh= SHIGH
The highest s-Value to consider for everything.

e watsfiles=
If specified, the raw Data of the Wakepotentials in the x-y-Plane is written to ascii files.
The Format is self-explanatory.

e xlowwats etc the limiting Planes of the Region where w(x,y,s) shall be written to wats-
Files.

e frequency
A special Parameter for Dr Guenzel. All others: Ignore it.

e 2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

e plotopts= ANY STRING CONTAING OPTIONS FOR gdi-3dplot:
gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.
Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

e showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

e onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

e doit
The requested Wakepotentials are computed from the Data in the Database, for each
Dataset an Instance of mymtv2 is started to plot the Data.

The longitudinal and transverse Lossfactors are printed in the Plots. They are also available
as the Symbols @zloss, @xloss, @yloss after a Wakepotential Computation.
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Example

To have plotted the longitudinal Wakepotential at the Planes x=1e-3 and x=2e-3:

-wake
watxi= 1e-3
watxi= 2e-3
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2.17 -totouchstone: Convert fri-data to TouchStone For-
mat

This Section allows the Combination of scattering Parameters in fri-Files to TouchStone Files.
The Section -sparameter may be used to generate the fri-Files.

HERFHHBHHH B H B HBRHH B RAH R RS H R H R R R H BB RAFH ARG H R R

# Flags: nomenu, noprompt, nomessage, #
HHH R R R
# section: -totouchstone #
HEH R
# outfile= ./s-matrix.sXp #
# ports= 2 #
# normalise= no #
# #
# ij= (1,1) —-- Index of S-Parameter. #
# file= -none-

# -— Filename of S-Parameter. #
# factor= 1.0 -- Factor to apply. #
# iport= 1, fcutoff= 0.0 #
# HH4 #
# Already specified Files: #
# ij: (1,1), factor: 1.0, fcutoff: 0.0 #
# file: -none-

# ij: (1,2), factor: 1.0, fcutoff: 0.0 #
# file: -none-

# ij: (2,1), factor: 1.0, fcutoff: 0.0 #
# file: -none-

#ij: (2,2), factor: 1.0, fcutoff: 0.0 #
# file: -none-

HEH
# clear, doit, 7, return, end, help, 1s #

HERFHHBHHH B H B H B H B BAHHBFH R H ARG H BB H RS H ARG H RS H AR HRHHAH

e outfile= VALID-FILENAME:
The Name of the RouchStone-File to be generated. If the File exists, it will be overwritten.

e ports= NN:
The Order of the scattering Matrix to write to the TouchStone File. If the Order is N,
N*N scattering Parameters have to be specified as fri-Files.

e normalise:
If yes, the scattering Matrices will be normalised such that each Column is a Unit Vector.

o ij= (I, :
The Indices of the scattering Parameter to be specified as a fri-File.

e file= NAME-OF-A-FRI-FILE:
The Name of the fri-File which contains the Data of the scattering Parameter with Indices

(1, J).
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e factor= NUMBER:
The Data in the fri-File will be multiplied by NUMBER before it is written to the
TouchStone-file.

e doit
The scattering Parameters are read from the specified Files and are written to the TouchStone-
File.

All fri-Files must have the same frequency Resolution (use wantdf= DF), and must have the
same frequency Range.

Example

The following Shell-Script computes the four Rows of the scattering Matrix of a four-Port
Device, by exciting four times a different Port. The computed scattering Parameters are stored
as fri-Files and are combined to one TouchStone-File

#!/bin/sh

#

# First Step:

# Computation of the four rows of the scattering matrix.

# The results of each computation are stored in a different file.
#

# In the inputfile "arndt.00.x.gdf", the outfile is defined as
# outfile= /tmp/bruwl931/garbage/arndt-excitation-at-PEXC
#

#

# At each computation, a different port is excited.

#

# In the inputfile, the excitation is defined via:

# -pexcitation

# port= PEXC,

# mode= 1, amplitude= 1, frequency= 17e9, bandwidth= 20e9,

#

for PEXC in xlowl xhighl xlow2 xhigh2
do

gdl -DPEXC=$PEXC < arndt.00.x.gdf | tee out-excitation=$PEXC
done

Fouriertransform, and generating fri-files.
The names of the fri-files are defined via

-general, scratch= /tmp/bruwl931/garbage/exc-at-$PEXC-

H OH OH OH H OHH

Frequency resolution is 10 MHz (wantdf= 10e6)
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#
for PEXC in xlowl xhighl xlow2 xhigh2

do
gdl.pp << EOF
-general
infile= /tmp/bruwl931/garbage/arndt-excitation-at-$PEXC
scratch= /tmp/bruwl931/garbage/exc-at-$PEXC-
—sparameter
window= yes, edgeofwindow= 0.7
wantdf= 10e6
flow= 5e9, fhigh= 25e9
timedata= no, fsumpower= no, magnitude= no, phase= no, smithplot= no
fri= yes
onlyplotfiles= yes
doit
EOQF
done
#

# Second step.
# Combining the rows of the scattering matrix to one TouchStone-file.
#

gdl.pp << EOF

—-totouchstone
clear # file= - undefined -
ports= 4

sdefine(BASE, /tmp/bruwl931/garbage/exc-at)
sdefine(P1, xlowl) sdefine(P2, xhighl)
sdefine(P3, xlow2) sdefine(P4, xhigh?2)
ij= (1,1), file= [BASE]-[P1]-[P1]_out_1.fri
ij= (1,2), file= [BASE]-[P1]-[P2] out_1.fri
ij= (1,3), file= [BASE]-[P1]-[P3]_out_1.fri
ij= (1,4), file= [BASE]-[P1]-[P4]_out_1.fri

ij= (2,1), file= [BASE]-[P2]-[P1]_out_1.fri
ij= (2,2), file= [BASE]-[P2]-[P2] out_1.fri
ij= (2,3), file= [BASE]-[P2]-[P3]_out_1.fri
ij= (2,4), file= [BASE]-[P2]-[P4] _out_1.fri

ij= (3,1), file= [BASE]-[P3]-[P1]_out_1.fri
ij= (3,2), file= [BASE]-[P3]-[P2] _out_1.fri
ij= (3,3), file= [BASE]-[P3]-[P3]_out_1.fri
ij= (3,4), file= [BASE]-[P3]-[P4] _out_1.fri

ij= (4,1), file= [BASE]-[P4]-[P1] _out_1.fri
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ij= (4,2), file= [BASE]-[P4]-[P2] _out_1.fri
ij= (4,3), file= [BASE]-[P4]-[P3]_out_1.fri
ij= (4,4), file= [BASE]-[P4]-[P4]_out_1.fri
outfile= /tmp/bruwl931/garbage/touchstone.sdp

doit
EOF

HEHSHHARHHERHH
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2.18 -combine: Build scattering Matrices via scattering
other scattering Matrices

This Section allows the Combination of scattering Matrices of several Devices to the resulting
scattering Matrix of the combined Device.

HERHHBHHH B H B H B H B BAHHBFH R H B R R H BB RAFH ARG H R R

# Flags: nomenu, noprompt, nomessage, #
T L s s
# section: -combine #

HEH
# outfile= ./s-matrix.sXp

# show= yes -- Give a Plot of the resulting #
# -- Scattering Parameters. #
# kdevice= 1, smatrix= -none-

# kdevice= 2, smatrix= -none-

# kdevice= 3, smatrix= -none-

# plik= (1, 1), p2ik= (1, 2 ), factor=
# fcutoff= 0.0, epsmue= 1.0, linelength=
#
#
#
#
#
#
#

O =
o O

rpi= 1, pik= (1, 1)
Hit#H#
Specified Port Connections:

-— none so far --

HiH#
Specified outer Ports:

-— none so far --
R
# connect, assign, clear, doit, 7, return, end, help #
HHH R R R R

HOH B OH OH OH OH R R

e outfile=
The Name of the File where the resulting scattering Matrix will be written to. The File
will be written in TOUCHSTONE-Format.

e kdevice= NUMBER, smatrix= FILENAME
The Number of some Device, and the File where its scattering Parameters are to be found

in. The smatrix-File has to contain the Data in TouchStone-Format. There can be up to
100 Devices.

e plik= ( I1, K1 ), p2ik= ( I2, K2 ), factor= FACTOR,
fcutoff= FC, epsmue= EPSMUE, linelength= LL, connect
The Port 11 of device K1 is connected to the Port 12 of Device K2 via a Line of Length=LL.
The Line has the Parameters cutoff=FC, eps*mue=EPSMUE. The Damping of the Line
is FACTOR.

e rpi= IRPI, pik= (I,K), assign
The Port pik(I,K) is declared to be the outer Port IRPI of the resulting Device.

e show= [yes|no]:
Give a Plot of the resulting scattering Parameters.
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e doit:
The resulting scattering Matrix is computed and written to the specified ”outfile”.

Example

—-combine

outfile= ./filter.s2p
kdevice= 1, smatrix= /tmp/UserName/ipart=1.s2p
kdevice= 2, smatrix= /tmp/UserName/ipart=2.s2p
kdevice= 3, smatrix= /tmp/UserName/ipart=1.s2p

# Connect the Ports at the Cutplanes.
# i: Port, k: Device
plik = (2,1), p2ik = (1,2), fcutoff= 3.2e9,
epsmue= 1, linelength= -5e-3, factor= 1, connect
plik = (2,2), p2ik = (2,3), fcutoff= 3.2e9,
epsmue= 1, linelength= -5e-3, factor= 1, connect

# rpi : Resulting Port I
# pik : Port I of device K
rpi= 1, pik= (1,1), assign
# The port ’1’ of the resulting device shall be the port ’1’ of device ’1’.
rpi= 2, pik= (1,3), assign
# The port ’2’ of the resulting device shall be the port ’1’ of device ’3’.
doit
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2.19 -smonitor: Analyse scalar Time Domain Signals

This Section is for analysing Data monitored via gd1’s section -smonitor, ie. scalar Flux Quan-
tities.

HUHH AR R S R

# Flags: nomenu, noprompt, nomessage, #
B L L e L R R R R L L L L R R L I B R R e R IR BRI R ST
# section: -smonitor #
g g g
# symbol = - none - #
# timedata = yes --— ( yes | no ) #
# upto = auto -- [s] ( auto | REAL ) #
# freqdata = yes -— ( yes | no ) #
# wantdf = auto -- ( auto | REAL ) #
# windowed = yes --— ( yes | no ) #
# edgeofwindow= 0.70 -- At what Frac. start to apply Window #
# flow = auto -- [1/s] ( auto | REAL ) #
# fhigh = auto -- [1/s] ( auto | REAL ) #
g g
# 2dplotopts= -geometry 690x560+10+10 #
# linecolor= 0 -— 0: foreground, 3: yellow #
# foreground= black -—- black, white #
# Dbackground= white —-- blue, white, black #
# showtext = yes -- (yes | no) #
# onlyplotfiles= no -- (yes | no) #
B L L L R R L R L L L L R G L I B R R R IR BRI R R R IR
# doit, 7, return, end, help, 1s #

HUFHH A R R S R

e symbol= BLA_BLA_BLUB:
The Name which was specified to monitor the scalar Quantity.

e timedata= [yes|no]:
Specifies whether you want to have a Plot of the recorded Time-History of the scalar
Quantity:.

e upto= [auto|REAL]:
Up to what Time the Data shall be analysed.

e freqdata= [yes|no]:
Specifies whether you want to get a Plot of the fft’ed Time History.

e wantdf= REAL:
The wanted frequency Resolution of the freq-Data.

e windowed= [yes|no]:
Specifies whether you want to have a Hann-Window applied to the Time Domain Data
before the fft is done.
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edgeofwindow= REAL:
Specifies the Fraction where the Decay of the Hann-Window shall start.

flow, fhigh : REAL:
The lower and upper frequency Limit of the freq-Plot.

2dplotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:

gd1.pp does not display the Data itself, but writes a Datafile for mymtv2 (1D and 2D
Data) and starts mymtv2 to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of mymtv2.

plotopts= ANY STRING CONTAING OPTIONS FOR gdl-3dplot:

gd1.pp does not display the Data itself, but writes a Datafile for gd1.3dplot (3D Data)
and starts gd1.3dplot to display these Data.

Useful Options are:

— -geometry X11-GEOMETRY Initial geometry for the X11 window of gd1.3dplot.

showtext= [yes|no]:
This flags, whether the Annotation-Text shall appear in the Plots.

onlyplotfiles= [yes|no]:
This flags, whether Plotfiles shall be written AND mymtv2 or gd1.3dplot shall be started
to display them on a X11 Display, or whether only the Plotfiles shall be produced.

doit:
The selected Symbol is read from the Database and the Analysis is performed. Plotfiles
are generated and mymtv2 is started to display the Plotfiles.
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2.20 -fexport: Export 3D-Fields to ASCII Files
3D E and H Fields can be exported to ASCII files. Also Portmode Fields can be exported.

HERFHHBHHH B H B H B H BB H RS H R H R R R H BB RAFH ARG H R R

# Flags: nomenu, noprompt, nomessage, #
B L L L R R L R L L L R L I B R R R IR BRI R R R I
# Section: -fexport #

HERFHHBHHHBHHH B H B H BB R RS H B H R AR H BB RAFH ARG FH AR R

# symbol = h_1 #
# quantity= h #
# solution= 1 #
# phase = 45.0000 -— Only for Portmodes. #
# bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30 #
# bbxhigh = 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30 #
# outfile = ./gdfidl-exported-field #
B L L L R R R L L L L R R L I B R R R R IR BRI R R R IR
# doit, 7, return, end, help, 1s #

HUHH AR R R

e symbol= QUAN_ISOL:
This is the full Name of the Symbol to be processed. This Field has may be a 3D-E-Field
or a 3D-H-Field or a Portmode Field.

e quantity= QUAN:
This is the first Part of the "symbol”.

e solution= ISOL:
This is the last Part of the "symbol”, the Index of the ”symbol”.

e bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the Limits of a bounding Box. Only the Fields that lie within the Box are written.

e outfile=:
The Name of the File to write the Field values to.

e doit:
The Exportfile is written. The Format of the File should be self-explanatory.
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2.21 -2dmanygifs: Create many GIF Files

3D-Fields which were exported via gd1’s section -fexport or gdl.pp’s Section -fexport can
be used to create GIF-Files.

S A

# Flags: nomenu, noprompt, nomessage, #
A R R R R
# Section: -2dmanygifs #
A R R
# 1stinfile = /tmp/UserName/fexported--000000000.gz #
# outfiles = auto #
# mpegfile = 2dmanygifs.mpeg #
# uptonfiles= 1000000000 #
# ixoffset =0 #
# iyoffset =0 #
# stride =1 #
# width = 1000 #
# scale =1.0 #
# what = rHy -- rHx,rHy,Hx,Hy,Ezx,Ezy #
# log = no -- plot log(l+|scalexf|) #
# zerolines = yes -- Plot Lines at f=0 #
# show = yes —-— Show the mpeg. #
A R R R
# doit, 7, return, end, help #

B S S S s R

e 1stinfile= FILENAME-NUMBER:
The first File to read.

e outfiles:
The Basename of the GIF-Files to be written. If outfiles=auto, the GIF-Files will have
the same Name as the read fexported Files, with the Letters .gif attached.

e mpegfile:
The Name of the mpeg File to create from the many GIFs.

e uptonfiles=NFILES:
How many GIF-Files to create. gd1.pp will try to read the first File, given by 1stinfile=FILENAME,
and guess the next Files from the Name of the first File, ie. it will count up the trailing
Number. It will read up to NFILES.

o ixoffset=IX0, iyoffset= IYO, what= [rHx|rHy]:
The Plots are 2d-Plots of a Field Component in a Plane. The Plane of the 3D-Field in the
fexported Files to take is the IX0.th Plane, or the IY0.th Plane.
what=rHx gives Plots of the x-Component of the Field, multiplied by the distance from the
Axis, what=rHy gives Plots of the y-Component of the Field, multplied by the Distance
from the Axis.
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e doit:
The Files are read, the GIFs are generated, and it is tried to create a mpegfile from the
GIFs.
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2.22 -3dmanygifs: Create many GIF Files

Datasets of H-Fields on Surfaces exported via gd1’s Section -fexport, what=honmat can be
used to create GIF-Files.

A S A

# Flags: nomenu, noprompt, nomessage, #
A R R R R
# Section: -3dmanygifs #
D L R L R L L L L R R R | L L L e R L R RIS R R R A
# 1stinfile = /tmp/UserName/H-onmat--000000001.gz #
# outfiles = auto #
# uptonfiles= 1000000000 #
# stride = 1 #
# what = abs -— abs, logabs, loglogabs #
# mpegfile = ./3dmanygifs.mpeg #
# eyeposition = ( undefined, undefined, undefined ) #
# rotsequence= xyz #
# xrot = -30.0 #
# yrot = 40.0 #
# zrot = 0.0 #
# dxrot= 0.0 #
# dyrot= 0.0 #
# dzrot= 0.0 #
# scale= 1.0 -- Plot scalexf. #
# width= 1000 -- Width of the GIFs. #
# show= yes —-— Show the mpeg #
A R R R R
# doit, 7, return, end, help #

A S

e 1stinfile= FILENAME-NUMBER:
The first File to read.

e outfiles:
The Basename of the GIF-Files to be written. If outfiles=auto, the GIF Files will have
the same Name as the read fexported Files, with the Letters .gif attached.

e uptonfiles=NFILES:
How many GIF Files to create. gd1.pp will try to read the first File, given by 1stinfile=FILENAME,
and guess the next Files from the Name of the first File, ie. it will count up the trailing
Number. It will read up to NFILES.

e what= [absh | logabs]:
What to Display. The absolute Value of the Fieldstrength on the Material Patches, or the
Logarithm of the absolute Value.

e mpegfile:
The Name of the mpeg file to create from the many GIFs.
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xrot= XROT, yrot= YROT, zrot= ZROT:
The Angles to rotate the Geometry around.

dxrot= DXROT, dyrot= DYROT, dzrot= DZROT:
The Increment of the Angles. The i.th plot will be rotated by XROT+(i-1)*DXROT
around the x-Axis.

boxed:
Indicates whether a Box indicating the processed Volume shall be shown in the Plots.

doit:
The Files are read, the GIFs are generated, and it is tried to create a mpegfile from the
GIFs.
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Chapter 3

GdfidL’s command Language

3.1 Variables

A Variable has a Name and a Value. You define or redefine a Variable with the Sequence
sdefine(name, value) or a Sequence define(name, value).

e The Name of the Variable can be up to 32 Characters long. The Name must begin with
an alphabetic Character and may contain Numbers and alphabetic Characters.

e For sdefine(name, value), the Value of the Variable may be up to 132 Characters long.
It may contain any Characters inside, except for "(\)’. Leading and trailing Blanks in the
Value are ignored.

e For define(name, expr), the Value of the Variable is the Value of the arithmetic Expres-
sion expr.

Whenever gd1 or gdl.pp encounter the Name of an already defined Variable, the Name is
substituted by the Value of the Variable, and the Line is interpreted again.

3.1.1 Defining Variables from Outside

Both gd1 and gd1.pp can be supplied Options that define Variables from outside an Inputfile.
The Syntax is gdl -Dname=value. This way, you can e.g. compute Sispersion relations with
simple Shell Scripts. Variables defined in this way are not automatically evaluated. ( sdefine(..,..)

)

Example

#!/bin/sh
# Given the proper "inputfile.gdf", this shell-Script computes the
# dispersion Relation of some periodic Structure.
for PHASE in 0 20 40 60 80 100 120 140 160 180
do
gdl -DThisPhase=$PHASE < inputfile.gdf > out.Phase=$PHASE
done
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3.2 Arithmetic Expressions

Whenever gd1 or gd1.pp encounter the String eval(, the matching closing Brace is searched
and the String inside the enclosing Braces is interpreted as an arithmetic Expression. The Value
of the expression is transformed to a String and substituted for eval (expression).

Example

echo (2%3) # this outputs "(2%3)"
echo eval(2%3) # this outputs "6"

The arithmetic Expression may contain the arithmetic operators +,-,%,/,** %. In addition to
that, the boolean Operators ==, !=,<,>,<=,>= are handled. The result of applying a boolean
Operator is an integer 0 or 1. Zero stands for false, and 1 for true.
The Functions abs(x), min(x,y), max(x,y), log(x), cos(x), sin(x), tan(x),
atan(x), atan2(x,y), mod(x,y), pow(x,y) are recognised and evaluated.
In every Context where a Number is required as a Parameter, an arithmetic Expression may
be used. In these Contexts, enclosing the Expression in eval () is not required.

3.3 do-loops

Sections of the Input can be interpreted repeatedly via do loops: The Structure of a do loop is
the same as in Fortran.

do M1, M2, M3
# Loop-Body
enddo # or ’end do’

The Loop-Body may itself contain do-loops, Macro Calls, whatever. The iteration Variable M1
is not restricted to Integer Values.

do i= 1, 100, 1 # count upwards
echo I is 1

end do

do i= 100, 1, -1 # count downwards
echo I is 1

end do

do i=1, 2, 0.1 # non integer step
echo I is i
echo 2*I is eval(2x*i)

end do

3.4 1if elseif else endif

Conditional Interpretation of Part of an Inputfile is possible with if Blocks.
An if Block is:
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if (ARITHMETIC-EXPRESSION) then
#
# if-body
#

endif # or ’end if’

If the ARITHMETIC-EXPRESSION evaluates to something else than '0’ then the Body of the If-Block
is interpreted.
A general if block is:

if (ARITHMETIC-EXPRESSION) then
#
# if-body
#
elseif (ARITHMETIC-EXPRESSION) then
#
# elseif-body
#
else
#
# else-body
#
endif

If-Blocks may be nested.

3.5 Macros

Anywhere in your Input you can define Macros. A Macro is enclosed between two Lines: The
first Line contains the Keyword macro followed by the Name of the Macro. All Lines until a
Line with only the Keyword endmacro are considered the Body of the Macro. When gd1 or
gd1.pp find such a Macro, they read it and store the Body of the Macro in an internal Buffer.

Example
i
# This defines a macro with name ’foo’
#
macro foo

echo I am foo, my first argument is Qargl
echo The total number of arguments supplied is Onargs
endmacro

When gd1 or gdl.pp find a Call of the Macro, the Number of the supplied Arguments is
assigned to the Variable @nargs, and the Variables @argl, Qarg2, .. are assigned the Values
of the supplied Parameters of the Call. Similiar to the user definable Variables (via sdefine),
the Values of the Arguments are Strings. Of course, it is possible to have a String, e.g. "le-4’,
which happens to be interpreted in the proper Context as a real Number.
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Example

#

# this calls ’foo’ with the arguments ’hi’, ’there’
#

call foo(hi, there)

Macro Calls may be nested. The Body of a Macro may call another Macro.

3.6 Result-variables

gd1l.pp makes its Results accessible as symbolic Variables. The Names of these Variables all
start with @. The exact Name can be found in the Description of the Sections of gd1.pp. There
are some other Variables as well that have not yet been described.

e Opi, @clight: These are the Values of m and of the Velocity of Light.
The following Variables are defined as soon as a Database has been specified:

e Onx, Ony, Onz: These contain the Number of Grid Planes in the three coordinate Direc-
tions.

e 0x(i), @y(i), ©z(i): These are the Positions of the i.th Gridplane.

e Oxmin, @xmax, @ymin, @ymax: These are the extreme Coordinates of the computational
Volume.

gdl.pp has a special Variable @path. Its Value is a command String that would enter the
current Section.
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Chapter 4

Supplied Macros

This Section documents four Macros that define a Sequence of secondary Computations to be
performed in the Postprocessor gd1.pp. All four Macros are contained in the File
/usr/local/gdl/postprocessor-macros.

4.1 Q-Values

The quality Factor Q is defined as

Q=2 (4.1)

P
where
e w is the circular resonant Frequency,
e IV is the total stored Energy,
e P is the total Power Loss due to Currents in lossy Materials.
In the Section -wlosses we compute the wall Wosses via the Perturbation Formula. In the

Section -energy we compute the stored Energy in the H-Field.

4.1.1 Q-Values: Real valued Fields

The following macro contains the Commands to evaluate the above Formula for a given resonant
Field. This Macro is contained in the file /usr/local/gdl/postprocessor-macros.

macro QValue
pushflags, noprompt, nomenu, nomessage

define(QValue_PATH, @path) # remember current section
—-base # goto the base of the branch-tree
—energy # compute stored energy
quantity= h # ... we dont need to compute the
solution= Qargl # energy in the electric field
doit # -- it has to be the same
-wlosses # Wall-losses
doit
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echo
echo *** h-Energy is Ghenergy
echo *** metalpower is @Gmetalpower

return
define(QValue_value, eval(2x@pi*@frequency*2*Qhenergy/@metalpower))
echo *** mode number is Qargl
echo *x*x frequency is @frequency {Hz}
echo **x* QValue is QValue_value {1}
# echo return path is : QValue_PATH
QValue_PATH # back to where we came from ...
undefine (QValue_PATH)
popflags
endmacro

With the Definition of the Macro available, we can compute the Q-Value of the first resonant
Mode by saying;:

call QValue(1)

To compute the Q-Values of the first five Modes, we may say:

do i= 1, 5
call QValue(i)
enddo

4.1.2 Q-Values: Complex valued Fields

For complex Fields (resonant fields computed with periodic boundary conditions or lossy resonant
Fields), we have to integrate over the Real and imaginary Part separately:

macro per(QValue
pushflags, noprompt, nomenu, nomessage

define(perQValue_PATH, @path) remember current section
-base goto the base of the branch-tree
-energy compute stored energy

quantity= hre
solution= Qargl
doit
# echo **x W_h of real part is @henergy
define(hre_energy, @henergy)
quantity= him
doit
define(him_energy, @henergy)
define(htot_energy, eval(hre_energy+him_energy) )
-wlosses # Wall-losses
quantity= hre, doit
define(hre_metalpower, O@metalpower)
quantity= him, doit
define(him_metalpower, ©@metalpower)

. we dont need to compute the
energy in the electric field
-- it has to be the same
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define(htot_metalpower, eval(hre_metalpower+him_metalpower))
# echo **x*x total h-Energy is htot_energy
# echo ***x total metalpower is htot_metalpower
define(perQValue_value, eval(2*@pi*@frequency*2*htot_energy/htot_metalpower))
echo

echo *** mode number is @argl
echo *x*x frequency is @frequency {Hz}
echo ***x QValue is perQValue_value {1}
# echo return path is : per(QValue_PATH
per(QValue_PATH # back to where we came from ...
undefine (perQValue_PATH)
popflags
endmacro

With the definition of the Macro available, we can compute the Q-Value of the first resonant
Mode by saying:

call perQValue(1)

To compute the Q-Values of the first five Modes, we may say:

do i= 1, 5
call perQValue(i)
enddo

4.2 Computing normalised Shunt Impedances R/Q)

There are several Definitions for a normalised Shunt Impedance floating around. We take this
one:

Vv
2wW

R/Q = (4.2)

where
e R/Q is the normalised Shunt Impedance,

e U/ is the complex Voltage that would be seen by a Witness Charge traversing the Cavity
at a Speed of ¢y,

e w is the circular Frequency of the Mode,
e W is the total stored Energy in the Cavity (both electric and magnetic Energy).

If one evaluates the Voltage seen by the Witness Particle, one arrives at the Result

z2=z2 )
V= / EZ(J,’7y7Z)6%TO dz (43)

z=z1

for a Particle that travels in positive z-Direction from z = 2z; to z = z5.
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4.2.1 R/Q: Real valued Fields

The following macro contains the Commands to evaluate the above Formula for a given Real-
Valued resonant Field. This Macro is contained in /usr/local/gdl/postprocessor-macros

macro rshunt
pushflags, noprompt, nomenu, nomessage
define(rshunt_PATH, @path)

-base

—energy
quantity=
solution=
doit

# echo **xx W_e is Qeenergy
return

-lintegral
direction= z, component= z
startpoint= (0,0, @zmin)
length= auto
doit

# echo *** vabs is Qvabs
return
define(rshunt_value_a, eval(@vabs **2/(2x@pi*@frequency*(2x2*Qeenergy))))
define(rshunt_value_r, eval(@vreal**2/(2*@pi*@frequency*(2x2*Qeenergy))))
define(rshunt_value_i, eval(@vimag**2/(2*@pi*Q@frequency*(2*x2*Qeenergy))))

echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo

## echo return path is

*okk
KKk
KKk
KKk
*okk
*okk
KKk
KKk
*kk
Kok k
Kok k
KKk
KKk
KKk

QGargl

mode number
frequency

shunt
Shunt
Shunt

shunt
Shunt
Shunt

shunt
Shunt
Shunt

rshunt_PATH
undefine (rshunt_PATH)

## echo return path is

popfl

ags

endmacro

impedances as
Impedance/Q
Impedance/Q/m

impedances as
Impedance/Q
Impedance/Q/m

impedances as
Impedance/Q
Impedance/Q/m

remember current section

goto the base of the branch-tree

compute stored energy

. we dont need to compute the
energy in the magnetic field
-- it has to be the same

=+

accelerating voltage

is Qargl
is @frequency {Hz}

computed from | U * conjg(U) |
is rshunt_value_a {Ohms}
is eval(rshunt_value_a/@length) {0Ohms/m}

computed from | Re(U) * Re(U) |
is rshunt_value_r {Ohms}
is eval(rshunt_value_r/@length) {0Ohms/m}

computed from | Im(U) * Im(U) |
is rshunt_value_i {Ohms}
is eval(rshunt_value_i/@length) {Ohms/m}

: rshunt_PATH

# back to where we came from ...

: rshunt_PATH
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4.2.2 R/Q: Complex valued Fields

For complex valued Fields, we evaluate separately the real Part and the imaginary Part of the
Field. This is done with the following macro:

macro perrshunt
pushflags, noprompt, nomenu, nomessage

define(rshunt_PATH, Qpath) # remember current section

-base # goto the base of the branch-tree

—energy # compute stored energy
quantity= ere # ... we dont need to compute the
solution= Qargl # energy in the magnetic field
doit # -- it has to be the same

# echo **x W_e of real part is Qeenergy
define(ere_energy, Geenergy)
quantity= eim
doit
define(eim_energy, Geenergy)
define(etotenergy, eval(ere_energy+eim_energy) )
return
-lintegral # accelerating voltage
direction= z, component= z
startpoint= (0,0, @zmin)
length= auto
quantity= ere, doit
# echo **xx vabs of real part is Qvabs
define(V_ere_re, Qvreal) define(V_ere_im, @vimag)
quantity= eim, doit
# echo ***x vabs of imaginary part is @vabs
define(V_eim_re, Qvreal) define(V_eim_im, @vimag)
return
define(vztotre, eval(V_ere_re-V_eim_im))
define(vztotim, eval(V_ere_im+V_eim_re))
define(vztotabs, eval((vztotrex*2+vztotim**2)**x0.5) )
define(rshunt_value, eval(vztotabs**2/(2*Qpi*@frequency*(2*xetotenergy))))
echo
echo *** mode number is @argl
echo *x*x frequency is @frequency {Hz}
echo ***x Shunt Impedance is rshunt_value {Ohms}
echo ***x Shunt Impedance/m is eval(rshunt_value/@length) {Ohms/m}
# echo return path is : rshunt_PATH
rshunt_PATH # back to where we came from ...
undefine (rshunt_PATH)
popflags
endmacro
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Chapter 5

stp2stl: Converts STEP File to
STL-File

A OpenCascade-based STEP to STL File Converter is provided. The Converter reads a STEP-
File and writes a STL-File. The Parameter ~deflection=XX’ controls the Accuracy of the gener-
ated STL-File. A sample Shell Script which generates two STL-Files from the same STEP-File
but with different Values for -deflection=XX" is shown below.

#!/bin/sh

for DEFL in le-4 le-b
do
$GDFIDL_HOME/Linux-x86_64/stp2stl \
-infile=/usr/local/gdl/examples/Vac-Quart_12WNSDVG1.8.stp \
—-deflection=$DEFL -outfile=/tmp/UserName/$DEFL.stl
done

Parts of the generated STL-Data are shown in Figures 5.1 and 5.2.
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Figure 5.1: A Part of the STL-Data generated with deflection set to le-4
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Figure 5.2: A Part of the STL-Data generated with deflection set to le-5
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Chapter 6

Examples

This Chapter shows some Examples for the Interplay of Device Description, Computation, and

Postprocessing.
There is no Example for computing Eigenvalues, as this is mentioned in great Detail in the

Tutorial.
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6.1 Wake Potentials

The Computation of Wakepotentials occurs in two Steps.

e gd1 is used to perform a Time-Domain Computation with an exciting relativistic Line-
Charge.

e Then, gd1.pp is used to compute the Wakepotentials from the Data that were recorded
by gd1.

As a simple Example, we use a very strange Device where we want to compute the Wakepotentials
of. The Input for gd1 is

# /usr/local/gdl/examples-from-the-manual/wake-example-1.gdf

define(LargeNumber, 1000)

#
# The following picture shows a cut through the structure to be
# modelled and the variables associated to the lengths.
#
#
# a a a
# | <===——————- >|<=mmmm >|<==mmm—————= > |
#
# - e —
# - | |
# b | | |
# | | |
# ________________________________ -
# | beam |
# | <===—————— > | d
# | |
# ________________________________________________ -
#
# x~
# |-> z
#
define( a, 1le-2 )
define( b, 5e-3 )
define( ¢, 5e-3 )
define( d, 1le-2 )

-general
outfile= /tmp/UserName/wake-example
scratch= /tmp/UserName/wake-example-scratch

text ()= A strange Device,

text ()= it serves only as an Example
text ()= for computing Wakepotentials.
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-mesh
define (STPSZE, 3*a/60 )
spacing= STPSZE
perfectmesh= no

pxlow= 0, pxhigh= c+b
pylow= -STPSZE, pyhigh= d
pzlow= 0, pzhigh= 3*a

cxlow= ele, cxhigh= ele
cylow= ele, cyhigh= ele
czlow= ele, czhigh= ele

#

# We enforce a Meshline at the Position of the Linecharge
# by enforcing two Meshplanes.

#

xfixed(1, c/2, 0)

yfixed(1, d/2, 0)

-brick
#
# Fill the universe with Metal.
#
material= 1
volume= (-LargeNumber, LargeNumber,\
-LargeNumber, LargeNumber,\
-LargeNumber, LargeNumber)
doit

#
# Carve out the Waveguide.
#
mat O
xlow= 0, xhigh= c
ylow= 0, yhigh= LargeNumber
zlow= -LargeNumber, zhigh= LargeNumber
doit

#
# Carve out the Resonator Box.
#
mat O
xlow= 0, xhigh= c+b
ylow= 0, yhigh= LargeNumber
zlow= a, zhigh= 2%a
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doit

-volumeplot
eyepos= ( 1.0, 2.30, 0.5 )
showlines= yes
scale= 2.5
doit

-fdtd
-ports
name= zlow, plane= zlow, modes= 0, doit
name= zhigh, plane= zhigh, modes= 0, doit

—-lcharge
charge= 1le-12 # 1 pAs
sigma= 5e-3
xposition= c/2
yposition= d/2

-fdtd
doit

We start gd1 with the UNIX-Command:

gdl < wake-example-1.gdf | tee out

The next Step is to tell the Postprocessor that we wish to see the Wakepotentials: The
Commands for the Postprocessor gd1.pp are:

-general, infile= Qlast
-wakes
doit

We get three Plots for the three Components of the Wakepotential at the (x,y) Position where
the Line-Charge was travelling.
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A strange Device,
it serves only as an Example
for computing Wakepotentials.

Figure 6.1: This Volumeplot shows the discretised Device. Although gd1 allows an inhomoge-
neous Mesh even when a particle Beam is present, this is not explicitely used here.
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Figure 6.2: The z-Component of the Wakepotential at the (x,y)-Position where the exciting
Line-Charge was travelling. For Reference, the Shape of the exciting Charge is plotted as well.
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Figure 6.3: The two transverse Components of the Wakepotential at the (x,y)-Position where
the exciting Line-Charge was travelling. For Reference, the Shape of the exciting Charge is
plotted as well. The transverse Wakepotentials are computed as the Average of the transverse
Wakepotentials nearest to the Position where the Line-Charge was travelling. The y-Component

of the Wakepotential vanishes, as it should be.
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6.2 Scattering Parameters

The Computation of scattering Parameters is via two Steps.
e gdl1 is used to perform a Time-Domain Computation with an excited Port Mode.

e Then gd1.pp is used to compute the scattering Parameters from Data that were recorded
by gdl.

As a simple Example, we use a somewhat strange Device where we want to compute the scattering
Parameters of. The Input for gd1 is

# /usr/local/gdl/examples-from-the-manual/spar-example-1.gdf
define(LargeNumber, 1000)

define( a, 1le-2 )
define( b, 5e-3 )
define( ¢, 5e-3 )
define( d, 1le-2 )

define(FREQ, 20e9)

-general
outfile= /tmp/UserName/spar-example
scratch= /tmp/UserName/spar-example-scratch

text ()= A strange Geometry, just an Example.

-mesh

define (STPSZE, 3*a/60 ) # Too large for MPI

# define(STPSZE, a/60 )
spacing= STPSZE
graded= yes, qfgraded= 1.2, dmaxgraded= Q@clight / FREQ / 40
perfectmesh= no

pxlow= 0, pxhigh= c+b
pylow= -STPSZE, pyhigh= d
pzlow= 0, pzhigh= 3*a

cxlow= ele, cxhigh= ele
cylow= ele, cyhigh= ele
czlow= ele, czhigh= ele

-brick
#
# Fill the Universe with Metal.
#
material= 1
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volume= (-LargeNumber, LargeNumber,\
-LargeNumber, LargeNumber, \
-LargeNumber, LargeNumber)
doit

#
# Carve out the Waveguide.
#
mat O
xlow= 0, xhigh= c
ylow= 0, yhigh= LargeNumber
zlow= -LargeNumber, zhigh= LargeNumber
doit

#

# Carve out Resonator Box.

#

mat O
xlow= 0, xhigh= c+b
ylow= 0, yhigh= LargeNumber
zlow= a, zhigh= 2%a

doit

-volumeplot

eyepos= ( 1.0, 2.30, 0.5 )
showlines= yes

scale= 3

doit

-fdtd
-ports
name= Input, plane= zlow, modes= 1, doit
name= Output, plane= zhigh, modes= 1, doit

-pexcitation
port= Input
mode= 1

amplitude= 1
frequency= FREQ
bandwidth= 0.7*FREQ

-time
#
# tminimum: the minimum Time to be simulated
# tmaximum: the maximum Time to be simulated
# If the Amplitudes have died down sufficiently
# at a Time between tmin and tmax,
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#  the Computation will stop.
#

tmin=  10/FREQ

tmax= 1000/FREQ

amptresh= le-3

-fdtd
doit

We start gd1 with the Unix-Command:
gdl < spar-example-1.gdf | tee out

The next Step is to tell the Postprocessor that we wish the scattering Parameters to be
computed and plotted. In addition to the default Values, we want to see (Parts of ) the Timedata
that were recorded during the Time-Domain Computation, and we want to see the scattering
Parameters in a Smith-Chart. The Commands for the Postprocessor gd1.pp are:

-general, infile= @last
—-sparameter
ports= all, modes= 1
timedata= yes
smithplot= yes, markerat 19e9, markerat 20e9, markerat 21e9
doit

We get in total 9 Plots.
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Figure 6.4: This Volumeplot shows the discretised Geometry.
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Figure 6.5: The Data of the Excitation. Above: The time History of the Amplitude that was
excited in the Port with Name "Input’. Below: The Spectrum of this Excitation.
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Figure 6.6: The Data of the scattered Mode '1’ in the Port with Name ’Input’. Above: The
time History of its Amplitude. This was computed by gd1. Below: The scattering Parameter
as Amplitude Plot, and in a Smith-Chart. These Data are computed by gd1l.pp by Fourier-
Transforming the time History of this Mode, and dividing by the Spectrum of the Excitation.
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Figure 6.7: The Data of the scattered Mode ’1’ in the Port with Name '’Output’. Above: The
time History of its Amplitude. This was computed by gd1. Below: The scattering Parameter
as Amplitude Plot, and in a Smith-Chart. These Data are computed by gd1l.pp by Fourier-
Transforming the time History of this Mode, and dividing by the Spectrum of the Excitation.
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Figure 6.8: The Sum of the squared scattering Parameters. Since the Device is loss-free, this
Sum should ideally be identical to 1’ above the cut-off Frequency. The Sum of the computed
Parameters is only very near the cut-off Frequency of the Modes unequal "1’.
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6.3 Computing Brillouin-Diagrams

Brillouin Diagrams are Plots of Eigenvalues (resonante Frequencies) as a Function of the Phase-

Shift in periodic Structures. GdfidL allows Computation with specified Phase Shifts in x- y- and

z-Direction simultaneously. So we can compute Brillouin diagrams in 3D-Periodic Structures,

where the Plane-Normals of the Planes of Periodicity are in x- y- and z-Direction simultaneously.
The following Input defines an elemental Cell of such a periodic Structure.

# /usr/local/gdl/examples-from-the-manual/brillo.gdf

#
# Assign a value to "PHASE", if it is not yet defined
# via '"gdl -DPHASE=XX"
#
if (! defined(PHASE) ) then
define (PHASE, 45)

endif

#

# What Part of the Brillouin-diagram do we want to compute?
#

#

# part==1 : from Gamma to H : O<kx<pi/d, ky=0, kz=0

# part==2 : from H to N : kx=pi/d,  O<ky<pi/d, kz=0

# part==3 : from N to P . kx=pi/d, ky=pi/d,  0<kz<pi/d
# part==4 : from P to Gamma : O < (kx=ky=kz) < pi/d

#

#

# Get the Value of PART by inclusion of a File:

# the Content of the File is just

# "define (PART, 1)"

# or "define(PART, 2)"

# or "define(PART, 3)"

# or "define(PART, 4)"

include(this-part-of-brillo)

if ( PART == 1 ) then
define (XPHASE, PHASE)
define (YPHASE, 000)
define (ZPHASE, 000)
endif

if ( PART == 2 ) then
define (XPHASE, 180)
define (YPHASE, PHASE)
define (ZPHASE, 000)
endif
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if ( PART == 3 ) then
define (XPHASE, 180)
define (YPHASE, 180)
define (ZPHASE, PHASE)
endif

if ( PART == 4 ) then
define (XPHASE, PHASE)
define (YPHASE, PHASE)
define (ZPHASE, PHASE)
endif

define(INF, 10000.0 =* @Clight)
define (MAG, 2) define(EL, 1)

##

## Geometry definitions

H#

define (LATTICE_D, @clight / 2 )
define (RADIUS, LATTICE_D * 0.375 )

#

# Default Mesh Spacing.

#

define (STPSZE, RADIUS/10 )

HAHBHHAH RS HAHH

HAHBHHAH RS HAHH

HERHHBHHH B HH

HERHHBHHHBRHHH

HAHHHHAH RS HBHH

-general
outfile= /tmp/UserName/outfile
scratchbase= /tmp/UserName/delete-me-

text ()= Lattice Constant d= LATTICE_D
text ()= Radius of the Spheres= RADIUS
text()= r/d = eval (RADIUS/LATTICE_D)
text()= 2r/d = eval(2+*RADIUS/LATTICE_D)
text ()= stpsze= STPSZE

text ()= xphase: XPHASE

text ()= yphase: YPHASE

text ()= zphase: ZPHASE

-mesh
spacing= STPSZE
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graded= yes, dmaxgraded= 10*STPSZE
gfgraded= 1.3
perfectmesh= yes

perfectmesh= no

pxlow= -0.5*LATTICE_D, pxhigh= 0.5*LATTICE_D
pylow= -0.5*LATTICE_D, pyhigh= 0.5*LATTICE_D
pzlow= -0.5*LATTICE_D, pzhigh= 0.5*LATTICE_D

xperiodic= yes, xphase= XPHASE
yperiodic= yes, yphase= YPHASE
zperiodic= yes, zphase= ZPHASE

do ii= -1, 1, 1
xfixed( 2, ii*LATTICE_D-RADIUS, ii*LATTICE_D+RADIUS )
xfixed( 2, (ii-0.1)*LATTICE_D, (ii+0.1)=*LATTICE_D )

yfixed( 2, ii*LATTICE_D-RADIUS, iixLATTICE_D+RADIUS )
yfixed( 2, (ii-0.1)*LATTICE_D, (ii+0.1)*LATTICE_D )

zfixed( 2, ii*LATTICE_D-RADIUS, ii*LATTICE_D+RADIUS )
zfixed( 2, (1i-0.1)*LATTICE_D, (ii+0.1)*LATTICE_D )
enddo

HEHHHHARFHH AR H

-brick
#
# Fill the Universe with Vacuum.
#
material= 0
volume= (-INF,INF, -INF,INF, -INF,INF)
doit

define(M3, 1)
#
# Define square Lattice.
# Only a Part of these Spheres end up being within
# computational Volume.
#
do iz= 0, 1, 1
do ix= 0, 1, 1
do iy= 0, 1, 1

#

# A Sphere with Center at

# ( ix*LATTICE_D, iy*LATTICE_D, iz*LATTICE_D )
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#
-gbor
material= M3
origin= ( ix*LATTICE_D, \
iy*LATTICE_D, \
iz*LATTICE_D )
rprimedirection= ( 1, 0, 0 )
zprimedirection= ( 0, 0, 1 )
range= ( 0, 360 )

clear
point= ( -RADIUS, 0 )
arc, radius= RADIUS, type= clockwise, size= small
point= ( RADIUS, 0)
doit
enddo
enddo
enddo

#
# The connecting Rods in x-Direction.
#
do iz= 0, 1, 1
do iy= 0, 1, 1
-gccylinder
material= M3
radius= 0.1*xLATTICE_D
length= INF
origin= ( -INF/2, \
iy*LATTICE_D, \
iz*xLATTICE_D )
direction= ( 1, 0, 0 )
doit
enddo
enddo

#
# The Connecting Dods in y-Direction.
#
do iz= 0, 1, 1
do ix= 0, 1, 1
-gccylinder
material= M3
radius= 0.1xLATTICE_D
length= INF
origin= ( ix*LATTICE_D, \
-INF/2, \
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iz*LATTICE_D )
direction= ( 0, 1, 0 )
doit
enddo
enddo

#
# The connecting Rods in z-Direction.
#
do ix= 0, 1, 1
do iy= 0, 1, 1
-gccylinder
material= M3
radius= 0.1*LATTICE_D
length= INF
origin= ( ix*LATTICE_D, \
iy*LATTICE_D, \
-INF/2 )
direction= ( 0, 0, 1)
doit
enddo
enddo

#
# Definition of the Material Properties.
#
-material
material= M3, type= electric

#
# What does the Materialdistribution look like?
#
-volumeplot
## doit

I
#
# Computation of the Eigenvalues.
#
-eigenvalues
solutions= 20
estimation= 2.8

pfac2= le-2
passes= 2
doit

242



end

To compute the four Parts of the Brillouin-Diagram, we use a Shell-Script. This Shell-Script
starts a Program four times. That Program starts gd1 several times to compute the Frequencies
for different Phase-Shifts. This is the Shell-Script:

#!/bin/sh

#

# Compile the program which starts '"gdl" several times
#

f77 brillo.f -o brillo.a.out

for part in 1 2 3 4
do
#
# (re)create the file that defines which part of the
# Brillouin diagram is to be computed:
#
echo "define(PART, $part)" > this-part-of-brillo

#
# compute..
./brillo.a.out

#

# save the result, and display

#

cp brillo.mtv brillo.part=$part.mtv
mymtv brillo.part=$part.mtv &

done

#

# compile the program that combines the four parts
# to a single Brillouin diagram of a 3D structure,
# execute it,

# and display the result..

#

£90 a3dbrillo.f
cat brillo.part=[1-4] .mtv | a.out
mymtv2 3D-brillo.mtv &

The following is the Source of the Program that starts gd1 several times to compute the
Frequencies for different Phase-Shifts:

!
! /usr/local/gdl/examples-from-the-manual/brillo.f90
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!
PROGRAM Bla

IMPLICIT NONE
CHARACTER(LEN= 400) cmd

REAL, DIMENSION(300,1000) :: £fO
REAL, DIMENSION(1000) :: phO

INTEGER :: i11, 119, NMode, np, ip, Mode, iDum
REAL :: af, ap, pO, pl, Phase, Acc, f

ill= 11
i19= 19
OPEN (UNIT= i19, &
FILE= ’brillo.mtv’)

WRITE (UNIT= i19, FMT= 90)
90 FORMAT( &

’$ DATA= CURVE2D NAME= "Brillouin-Diagramm"’,/, &
% linetype= 0°,/, &
’% markertype= 3’,/, &
% equalscale= false’,/, &
% fitpage= false’,/, &
% xyratio= 3’,/, &
’% xlabel= "Phase-shift"’,/, &
% ylabel= "Frequency"’,/, &
>%, comment= "no comment"’,/ )

af= 0
ap= 0

NMode= 15

I pO: First Phase
I pl: Last Phase
| np: Number of Phases

pO= 0.
pl= 180.
np= 41

DO ip=1, np, 1
Phase= pO+(ip-1)*(p1-p0)/FLOAT (np-1)
phO(ip)= Phase
WRITE (UNIT= cmd, FMT= 81) Phase
81 FORMAT( &
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> gdl "-DPHASE=’, F8.2, ’"< brillo.gdf ’, &
’| tee brillo.tmp | grep "for me" > brillo.out’ )

write (UNIT= O, FMT= °’(1X,4711(A))’) ’ cmd:’, TRIM(cmd)

100

CALL system( cmd )

OPEN (UNIT= il1, &
FILE= ’brillo.out’)

Mode= 0

CONTINUE
DO
READ (UNIT= il11, FMT= =, ERR= 199, END= 199) iDum, f, acc
IF (acc < 0.5) THEN

Mode= Mode+1
IF (Mode <= NMode) fO(Mode,ip)= f
WRITE (UNIT= i19, FMT= 71) Phase,f

write (0,*) Phase, f, acc

199

71

99

af= MAX(af, f)
ap= MAX(ap, Phase)

END IF
END DO
CONTINUE
CLOSE (UNIT= i11)
END DO
FORMAT( ’@ point x1=’, 1P, E12.6, ’ y1=’, E12.6, &

DO

> z1= 0 markertype=1’, ’ markersize= 1’ )

Mode= 1, NMode, 1
WRITE (UNIT= i19, FMT= *)
DO ip=1, np, 1
WRITE (UNIT= i19, FMT= ) phO(ip),f0(Mode,ip)
END DO

END DO

WRITE (UNIT= i19, FMT= %)

WRITE (UNIT= i19, FMT= 99) 0., 0., 0., af, ap, af
FORMAT( 3(1X, 1P, 2(E12.6, 1X), /), /)

* %
*k
*k

DO

write the uninterpreted data

ip= 1, np, 1
WRITE (UNIT= i19, FMT= °’(//,A,F14.2)’) ’ # Phase:’, phO(ip)
DO Mode= 1, NMode, 1

WRITE (UNIT= i19, FMT= ’(A,1X,1P,E20.7)’) ’#’, f0(Mode,ip)
END DO

END DO
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Figure 6.9: The four Parts of the Brillouin-Diagram.

END PROGRAM Bla

The resulting Plots are presented in figure 6.9.
The following is the Sourcecode of the Program that combines the four Parts of the Brillouin-

Diagram into a single Plot:

*
*x /usr/local/gdl/examples-from-the-manual/a3dbrillo.f
*

* usage:

*

*x cat brillo.part=[1-4].mtv | a.out

* mymtv2 3D-brillo.mtv

*

*

DIMENSION f0(300,1 000), phO(1 000)
REAL, DIMENSION(100) :: Phase0O, scale

246



CHARACTER(LEN=1000) :: str

il1= 11

119= 19

OPEN (UNIT= i19

1 , FILE= ’3D-brillo.mtv’)

WRITE (UNIT= i19, FMT= 9000)
9000 FORMAT(
1 ’$ DATA= CURVE2D NAME= "Brillouin-Diagramm"’,/,
2 ’% linetype= 0’,/,
3 ’% markertype= 3’,/

4 7Y equalscale= false’,/,

5 ’% fitpage= false’,/,

6 ’% xyratio= 3°,/,

7 % xlabel= "normalised Phase-shift"’,/,
8 ’% ylabel= "Frequency"’,/,

9 ’% comment= "no comment"’,/
X )

af= 0.

ap= 0.

NMode= 10

phase0(1:4)= (/ 0.0,

1 1.0,

2 2.0,

3 4.0 /)

scale(1:4)= (/ 1./180.0, Il Gamma to H
2 1./180.0, I H to N
3 1./180.0, I N to P
4 -1./180.0 /) ! P to Gamma

Phase Last= 0.
np= 1
str= 7’
DO
DO
IF (INDEX(str, ’# phase:’) .NE. 0) THEN
jj= INDEX(str, ’# phase:’)+LEN(’# phase:’)
READ (UNIT= str(jj:), FMT= %) phase
IF (phase .LT. Phase Last) THEN
np= np+1
ENDIF
Phase Last= phase
EXIT
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ENDIF
READ (UNIT= *, FMT= ’>(A)’, END= 10) str
ENDDO
write (*,%) ’ phase:’, phase
pp= PhaseO(np)
phO(np)= pp+phasexscale(np)

mode= 0
DO mode= 1, NMode, 1
READ (UNIT= *, FMT= ’(A)’, END= 10) str
READ (UNIT= str(2:), FMT= %, IOSTAT= iostat) f
IF (iostat .NE. 0) EXIT
write (*,%*) ’ pp, f:’, ppt+phasexscale(np), £
fO(mode,np)= £
WRITE (UNIT= i19, FMT= 7010) pp+phasexscale(np),f
af= MAX(af,f)
ap= MAX(ap,pp+phase*scale(np))
ENDDO
ENDDO
10 CONTINUE
*
7010 FORMAT(
1 ’@ point x1=’,E12.6,’ yl1=’,E12.6,’ zl= 0 markertype=1’,
2 ’ markersize= 1’)

WRITE (UNIT= i19, FMT= %)

WRITE (UNIT= i19, FMT= 99) 0.,0.,0.,af,ap,af
99 FORMAT(3(’ ’,2(E12.6,’ *)/),/)
*

END

The resulting Plot is presented in Figure 6.10.
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Figure 6.10: The four Parts of the Brillouin-Diagram combined.
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