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Abstract

The Large Hadron Collider (LHC) hosted at CERN, the European Organization for
Nuclear Research in Geneva, Switzerland, is the world’s largest particle accelerator.
With a circumference of 27 km, it can bring proton beams into collitions at a centre
of mass energy of 14 TeV. It has been conceived and built to let scientific research
to explore the high energy physics frontiers, keeping collision events at a design
luminiosity of 1034 cm−2s−1.

Beyond this goal challenging in itself, the High Luminosity LHC (HiLumi-LHC)
project aims at increasing the LHC luminosity by an order of magnitude and one of
the key ingredients to achieve that is to increase beam intensity. In order to keep
beam instabilities under control and to avoid excessive power losses a careful design
of new vacuum chamber components and continuous update and improvement of
the LHC impedance model are required.

Collimators are among the major impedance contributors. During LHC Run I,
measurements with beam have revealed that the betatron coherent tune shifts were
higher by about a factor of 2 with respect to the theoretical predictions based on
the impedance model up to 2012. In that model the resistive wall impedance was
considered as the dominating impedance contribution for collimators. By means of
GdfidL electromagnetic code simulations, the geometric impedance of secondary and
tertiary (TCS/TCT) collimators’ real structures (i.e. not simplified) was calculated,
contributing to the update of the LHC impedance model. This resulted also in a
better agreement between the measured and simulated betatron tune shifts.

During the LHC Long Shutdown I (LS I), some of the Run I TCS and TCT
collimators were replaced by new devices, embedding Beam Position Monitor (BPM)
pick-up buttons in the tapering regions, in order to provide accurate and continuous
measurements of the beam centres, and ferrite blocks for the damping of the Higher
Order Modes (HOMs) trapped in the collimators’ structure.

The injection collimators (TDI) are undergoing a substantial design review and
upgrade study stage, as part of the whole LHC injection protection system upgrade
foreseen to be finished in the LHC LS II (2018-2019). Measurements performed during
LHC Run I have shown that the presently installed TDIs contribute significantly
to both longitudinal and transverse impedance, determining beam induced heating
and high vacuum pressure that affected background of experiments. In the view of
higher intensities planned for the Run III and HiLumi-LHC operations, all these
impedance related issues have to be minimized.

The aim of this work was to perform accurate simulations of collimators’
impedance, which has become very important and challenging. Accurate does
mean as close as possible to the real conditions. Thus, in order to afford such a task,
the huge collimators’ CAD designs were used as input into GdfidL code. Besides,
several dedicated tests have been performed to verify correct simulations of lossy
dispersive material properties, such as resistive wall and ferrites, benchmarking code
results with analytical, semi-analytical and other numerical codes outcomes. The
results of the collimators wake fields and impedances calculations, together with
their comparison with experimental measurements are shown and discussed.
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Chapter 1

Introduction

1.1 The CERN Large Hadron Collider
The Large Hadron Collider (LHC) hosted at CERN, the European Organization for
Nuclear Research in Geneva, Switzerland, is the world’s largest particle accelerator.
With a circumference of 27 km, it can bring into collisions proton beams at a
centre of mass energy of 14 TeV. It is the last element of a more complex chain of
accelerators (Fig. 4.4). Each machine of this chain injects the beam into the next

Figure 1.1. A sketch of the whole LHC accelerator complex, together with the main
experiments and beam lines.

one at increasing energy. First, Hydrogen atoms are ionized by a Duoplasmatron
Proton Source, stripping orbiting electrons and producing protons to be injected
into Linac 2. Linac 2 accelerates protons up to the energy of 50 MeV, before they
are transferred to the Proton Synchrotron Booster (PSB) which brings them to 1.4
GeV. Protons are again transferred in sequence to the Proton Synchrotron (PS) and
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the Super Proton Synchrotron (SPS) where they reach energies of, respectively, 25
GeV and 450 GeV. At the end of the SPS stage, protons are ready to feed the LHC
where they are accelerated to the final energy of 7 TeV. The SPS injects two bunched
beams into the LHC, B1 and B2, via two transfer lines, TI2 and TI8, according to
the filling schemes in Fig. 4.5[1].

Figure 1.2. Bunches in the LHC, SPS and PS. PS batch consists of 72 bunches on h = 84
at extraction. Either three or four of these batches are sequentially transferred to the
SPS, thereby partially filling 3/11 or 4/11 of the SPS circumference. For each LHC ring,
12 of these 216 or 288 bunch trains are transferred from SPS to LHC. With 9 ·216+3 ·288
injections, the LHC is filled with 2808 bunches.

The accelerator complex can accelerate not only protons, but also Lead ions,
produced heating to a temperature of about 500°C a highly purified lead sample,
then ionizing the formed vapours by means of an electron current. The Pb29+ ions
are accelerated to 4.2 MeV/u and brought to impinge on carbon foils to be stripped
to Pb54+. These latter ions constitutes the intermediate beam accumulated in the
Low Energy Ion Ring (LEIR) and accelerated to 72 MeV/u before being injected into
the PS, which lets the beam to reach the energy of 5.9 GeV/u. This is the energy at
which the SPS is fed by the ion beam, finally stripped to Pb82+ and accelerated to
177 GeV/u before being finally transferred to the LHC, where Pb82+ ion beams will
be accelerated at 2.76 TeV/u.

The nominal energy stored per beam in the LHC is about 362 MJ, what char-
acterize the LHC as a record machine both from the stored energy and the energy
density points of view (Fig. 1.3(a) and Fig. 1.3(b)) [2]. Such an extreme facility puts
strong contraints on the reliability of the safety and the collimation systems. The
former has the role of aborting the beams in a clean way in case of any dangerous
condition; the latter one has to protect the machine and detectors from halo particles
and other unavoidable losses, as will be further discussed in more detail in section
1.3.



1.1 The CERN Large Hadron Collider 5

(a)

(b)

Figure 1.3

A schematic layout of LHC is shown in Fig. 1.4. There are eight arcs housing
154 dipole bending magnets and eight straight sections housing LHC detectors in
four of them and other machine utilities, such as radiofrequency, collimators and
beam dumps in four others. The four detectors are:

• ALICE (A Large Ion Collider Experiment), which studies the properties of
quark-gluon plasma;

• ATLAS (A Toroidal LHC ApparatuS), designed to study a wide range of
Physics at LHC, from the search for Higgs Boson[3, 4] to supersymmetries
(SUSY) and extra dimensions;

• CMS (Compact Muon Solenoid), aimed at the same Physics hunt as ATLAS
but with different technical solutions;
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• LHCb (LHC Beauty), designed to study asymmetries between matter and
antimatter in B particles interactions.

Figure 1.4

All the above mentioned detectors study very rare events. The number of events
per second generated by beam-beam collisions for a given process is given by

N = Lσ, (1.1)

where L is the luminosity and σ the cross section for the process under study. The
luminosity is a crucial figure of merit for a particle collider and for rare events the
demand is for it to be as large as possible, 1034cm−2s−1 for LHC. Depending only on
the beam parameters, the luminosity for a Gaussian beam profile can be written as

L = N2
b nfrγ

4πεnβ∗
, (1.2)

where Nb is the number of particles per bunch, n the number of bunches per beam,
fr the revolution frequency, γ the relativistic Lorentz factor, εn the normalized
transverse emittance and β∗ the β function at collision points. The integrated
luminosity performances over three years of operation, reported in Table 1.1, together
with the machine operational parameters before LS I reported in Table 1.2[5], allowed
ATLAS and CMS to discover the Higgs Boson1 [7, 8, 9, 10].

1ATLAS and CMS collaborations announced the Higgs boson discovery on July 4th, 2012 during
a joint seminar at CERN. More recently, the LHCb experiment claimed for pentaquark discovery
on July 14th, 2015[6].
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Year Overview COM Integrated Luminosity [fb−1]
2010 Commissioning 7 TeV 0.04
2011 Exploring limits 7 TeV 6.1
2012 Performance 8 TeV 23.1

Table 1.1. LHC operations 2010-2012

Parameter Value in 2012 Design value
Beam energy [TeV] 4 7
β∗ in IP 1,2,5,8 [m] 0.6,3.0,0.6,3.0 0.55
Bunch spacing [ns] 50 25
Number of bunches 1374 2808

Average bunch intensity [p/bunch] 1.6-1.7·1011 1.5·1011

Normalized emittance at start of fill [mm mrad] 2.5 3.75
Peak luminosity [cm−2s−1] 7.7·1033 1·1034

Max. mean number of events per bunch crossing ≈ 40 19
Stored beam energy [MJ] ≈ 140 362

Table 1.2. Performance related parameter overview

1.2 The High Luminosity LHC project
The European strategy for particle physics has, as its highest priority, the full
exploitation of the LHC discovery capabilities [11, 12]. In order to extend LHC
potential, a substantial upgrade is needed to increase the luminosity beyond its
design values, by a factor of 5 the instantaneous luminosity and by a factor of 10 its
integrated one. According to the baseline programme until 2025 shown in Fig. 1.5,
this upgrade is planned to take place in 2020s [13].

Figure 1.5. LHC baseline plan for the next decade. The red upper line shows collision
energy while the green lower lines the integrated luminosity.

Several innovative technologies will support the reliability of the novel machine,
High Luminosity LHC (HL-LHC hereinafter), such as 11-12 tesla Super Conducting
(SC) magnets, ultra compact SC cavities for ultra precise phase control and beam
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rotation, new collimation system and long high power SC links with zero energy
dissipation. With the just started Run II phase after LS I2, LHC is expected to
reach the design parameters, entering in the 13-14 TeV regime at a peak luminosity
of 1034 cm−2s−1, delivering an integrated luminosity to the installed experiments of
about 40 fb−1 per year. The physical reason making the HL-LHC upgrade strictly
necessary rely on the well assessed condition that running the machine at its full
luminosity capabilities after 2020 will not lead to a significant statistical gain in
experimental measurements [11].

The possible evolution of both peak and integrated luminosity in the next decade
is shown in Fig. 1.6, whereas in Fig. 1.7 the same quantities evolution is forecast in
the HL-LHC era.

Figure 1.6. LHC luminosity evolution in the next decade, showing peak luminosity in red
dots and integrated luminosity in blue line.

Several limitations for the luminosity increase are foreseen coming from the LHC
injector chain, beam impedance and beam-beam interactions, apart from the present
LHC being already affected by potential performance limitations from the beam
current, cleaning efficiency with 350 MJ beam stored energy, e-cloud and other effects
[14]. Among others, the collimation system will need changes and improvements in
the new HL-LHC machine configuration, because of vulnerabilities that will arise as a
consequence of the accelerator operations. It has been designed for the first operation
phase of LHC and optimized for robustness, but the lower impedance required for
the planned increase in beam intensity will lead to its significant upgrade.

2First Run II proton-proton collisions at 13 TeV center of mass energy took place already in
May 2015.
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Figure 1.7. HL-LHC luminosity evolution, showing peak luminosity in red dots and
integrated luminosity in blue line.

1.3 The LHC collimation system
Bunched3 particle beams are generally characterized by a Gaussian-like distribution
of particles in the transverse plane. So within one standard deviation, 1 σ, of the
Gaussian beam ∼68% of the particles are comprised. Looking at Fig. 1.8, the beam
core is usually defined as 0 − 3 σ (99.7% of all particles), while the region > 3 σ
is recognized as the beam halo. For the LHC the beam profile is more parabolic-
like then Gaussian-like. However no lack of validity is found in what follows, if a
Gaussian-like distribution is assumed.

Partial or total beam losses are unavoidable in particle accelerators. There
are several effects leading to beam losses, such as collisions in interactions points,
interactions with residual gas in vacuum systems and intra-beam scattering, beam
instabilities (single bunch, multi-bunch, beam-beam effects), dynamic changes driven
by machine operational cycle (orbit drifts, optics changes), RF noises and out-of-
bucket losses, injection and dump losses. All these effects can increase the beam halo
population and ultimately cause beam losses. Their mechanisms are charachterized
by a time-dependent beam lifetime during the machine cycle, τb, where the beam
intensity time dependence is given by

I(t) = I0 · e
− t
τb , (1.3)

and the particle loss rate by
− 1
I0

dI

dt
= 1
τb
. (1.4)

As an example, with τb = 1 h and I0 = 3.2 ·1014 p, the total loss per second would be
90 · 109 p/s, or 0.1 MJ/s= 100 kW. Again, at 7 TeV only 1% of total beam intensity

3Bunched beams are formed by “packets” or pulses of particles named bunches. On the contrary
“coasted” or unbunched beams have no longitudinal substructure.
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Figure 1.8. Core and halo definition for a particle beam with Gaussian transverse particle
distribution.

loss in a period of 10 s, would produce a peak load of 500 kW, whereas the upper
limit to SC magnets energy deposition, without quench, is ∼8.5 W/m.

Collimation system has been designed to accomplish several tasks, such as SC
magnets protection agains quenching, beam halo cleaning throughout the LHC beam
cycle (reaching an efficiency of 99.998%), its diagnostic and scraping, machine aper-
ture passive protection against radiation and hardware protection against radiation
hardness [15, 16, 17]. For the collimation system to be successful in all the assigned
tasks means to be subtended to the condition that all losses occur at collimators, and
not elsewhere in the machine. This entails all particles’ oscillations growing to large
amplitudes having to be intercepted by the collimators, thus protecting the machine.
Collimators are placed around the beam with various settings of longitudinal position
orientation in the H-V transverse planes and transverse distances from the beam.
Fig. 1.9 shows the collimators’ layout in the LHC machine, with the three stage
collimation system installed in the dedicated cleaning insertions IP3 and IP7, to
ensure that only a small fraction of lost protons escapes from there, while in Fig.
1.10 the LHC collimation hierarchy is depicted, with collimators disposition with
respect to the beam core depending upon material robustness. Generally low Z
materials, like Carbon Fiber Composite (CFC), ensure for higher robustness at the
expenses of absorption power.

The collimators’ design relies on two parallel jaws that define a slit for the beam
passage(Fig. 1.11(a)) [19]. The collimator whole box (Fig. 1.11(b)) can be rotated
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Figure 1.9. The LHC collimations system layout. Two three-stages cleaning insertions ar
installed in IP3 and IP7. Other absorber collimators are distributes along the machine.
Injection collimators are also shown near IP2 and IP8.

in the H-V plane to collimate horizontal, vertical or skew halo, as shown in Fig.
1.12(a),1.12(b) and 1.12(c).

The collimation hierarchy is composed of:

• Primary collimators (TCP) with Carbon Fiber Composite (CFC) jaws;

• Secondary collimators (TCS) made again of CFC jaws;

• Tertiary collimators absorbers with Tungsten (W) or Copper (Cu) made jaws.

Among others, injection collimators (TDI) are noteworthy also, with important role
in beam cleaning at the exit of SPS and local protection against injection failures.
Table 1.3 summarizes some TCP and TCS collimators specifications, while in Table
1.4 the main specifications for other LHC ring collimators are listed.

TCP collimators intercept stray particles of the primary halo for horizontal,
vertical, skew or momentum offsets, spraying losses downstream. Further losses of
secondary halo particles interception and dilutions happen at TCS collimators. At
the end of the warm cleaning insertions, less robust high Z (W, Cu) jaws collimators
absorb the diluted proton halo and showers. After this three-stage cleaning process,
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Figure 1.10. LHC collimation hierarchy. Collimators are disposed in order to protect the
machine against primary, secondary and tertiary radiation fields and hadronic showers
produced by the interaction of the primary proton beam halo [18].

(a) (b)

Figure 1.11. Photograph of a TCP/TCS LHC Run I type collimator along the beam path
(a) and of a TCP/TCS LHC Run I type collimator box during assembling (b).

finally, a fourth stage takes place again with high Z jaws collimators, having to
intercept tertiary halo close to the particle physics experiments and triplet magnets.

The LHC collimation design has taken into account many requirements, one
being the coupling impedance whose transverse and longitudinal component depends
strongly on collimator settings, both at injection and at top energy, given the
collimation gaps going down to 2.5 mm and a total installed collimators’ jaw length
of about 48 m per beam [20, 21]. The LHC performance relies upon beam cleaning
efficiency and coupling impedance, both potentially constituting a limitation in the
maximum achievable beam intensity.
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(a) (b) (c)

Figure 1.12. Collimators orientation in horizontal (a), vertical (b) and skew (c) planes,
with the beam sketched as a red spot.

Parameter TCP TCS
Jaw material CFC CFC

Jaw length [cm] 60 100
Jaw tapering [cm] 10 + 10 10 + 10

Jaw cross section [mm2] 65 · 25 65 · 25
Jaw resistivity [µΩm] ≤ 10 ≤ 10

Heat load [kW] ≤ 7 ≤ 7
Jaw temperature [°C] ≤ 50 ≤ 50

Residual vacuum pressure [mbar] ≤ 4 · 10−8 ≤ 4 · 10−8

Minimal gap [mm] ≤ 0.5 ≤ 0.5
Maximal gap [mm] ≥ 58 ≥ 58

Maximumm Jaw angle [mrad] 2 2
Table 1.3. Some specifications for TCP and TCS collimators.

Parameter TCT TCLA TCL TCLP TCLI
Jaw material W W Cu Cu CFC

Jaw length [cm] 100 100 100 100 100
Jaw tapering [cm] 10+10 10+10 10+10 10+10 10+10
Minimal gap [mm] ≤ 0.8 ≤ 0.8 ≤ 0.8 ≤ 0.8 ≤ 0.5
Table 1.4. Some specifications for other LHC ring collimators.

In the next chapter the concepts of wake fields and beam coupling impedances will
be expolited. Their influence on particle beam dynamics by means of induced beam
instabilities will be addressed also. Comprehensive and fully exhaustive treatments
of collective beam instabilities exist elsewhere and are referred to [22, 23] throughout
this thesis but are not its main subject, so that the discussion will be focused only
on those type of instabilities of concern for the study conducted on LHC collimators.
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Chapter 2

Wake fields and beam coupling
impedances

2.1 Where do Wake fields originate from
The motion of charged particles in the electromagnetic fields ( ~E, ~B) is governed by
the Lorentz force ~F [24]:

m0γ
d~v
dt = ~F = q( ~E + ~v× ~B), (2.1)

γ being the Lorentz energy factor γ = 1/
√

1− β2, β = v/c. The design of an
accelerator relies on the consideration of the motion of a single charged particle in
the environment of magnets and RF cavities, which must be stable (i.e. the particle
and the beam lifetime must be long enough to allow sufficient luminosity to the
installed physics experiments). So that, in what is usually called the linear lattice
design for a circular machine, three basic elements are addressed:

• the Dipoles which guides the particle trajectory via the magnetic field, weakly
focusing in the transverse horizontal x direction;

• the Quadrupoles which confines the particle motion near the design trajectory
via the magnetic field, focusing in the transverse x and y directions;

• the Sextupoles and higher order multipole magnets for the control of chromatic
and geometric aberrations;

• the RF cavities which keep the particle energy near the design energy via the
electric field, thus focusing in the longitudinal z direction.

A charged particle moving on a circular orbit is sketched in Fig. 2.1, in which the
three directions x, y and z above referred to are specified.

There are, however, additional electromagnetic fields coming from the interac-
tion of the charged beam particle (here called source) with its vacuum chamber
environment in the accelerator. The interaction takes place owing to the Gauss’s
law, which for a charge in free space reads

~∇ · ~E = ρ

ε0
, (2.2)



2.1 Where do Wake fields originate from 15

R

O
x

y

z

s = vt

Figure 2.1. A simple sketch of a reference charged particle moving on a circular orbit,
specifying the reference coordinate system.

where ρ is the charge density at the point where the field is ~E and ε0 is the electric
permittivity of free space, equal to 8.854× 10−12 F/m, in the SI system of units. Its
physical meaning is that electric field lines are absolutely attached to the charges,
they can be distorted but never cut away from the charges under any circumstances.
If the charge is in free space and stationary, its electric field lines radiate outwards
isotropically, as in Fig. 2.2(a). As a result of the theory of relativity, if the charge
moves relativistically with velocity v ≈ c, c = 2.997925× 108 m/s being the velocity
of light, electric field lines get contracted into a thin disk, usually called “pancake”,
perpendicular to the particle’s direction of motion with an angular spread of 1

γ , as
in Fig. 2.2(b). When the charge moves in the ultrarelativistic limit v = c, then the
pancake reduces to δ-function thin sheet, as shown in Fig. 2.2(c)[22].

q

~E

v = 0

(a)

q

~E

v ≈ c

(b)

q

~E

v = c

(c)

Figure 2.2. Electric field lines for a charge in free space a) stationary, b) moving relativis-
tically and c) in the ultrarelativistic limit.

Magnetic field is also generated by a moving charge, with the same distribution as
the electric field but with different properties. It also get contracted into a pancake-
like thin disk as v approaches c, but its direction is azimuthal instead of radial as
the electric field direction. Choosing a cylindrical coordinate system to describe the
particle motion in free space, (r, θ, s), in which s is the absolute longitudinal position
in the laboratory frame, thus pointing in the direction of motion of the charge q,
the application of the Gauss’s law 2.2 for the electric field and of the Ampere’s law
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for the magnetic field
~∇× ~B = µ0~j + 1

c2
∂ ~E

∂t
, (2.3)

where µ0 is the magnetic permeability of vacuum equal to 4π × 10−7 H/m in the
SI system of units and ~j is the current density vector, the following relations for
electric and magnetic fields can be obtained for the moving charge considered:

Er = 2q
r
δ(s− ct) (2.4)

Bθ = 2q
r
δ(s− ct). (2.5)

The situation in which a particle moves in the vacuum chamber of an accelerator
deserves a bit more of discussion. Let the particle move along the axis of an axially
symmetric perfectly conducting vacuum chamber pipe, as shown in Fig. 2.3. Let

q c

−q

Perfectly conducting wall

(a)

Beam

Test charge

Image charges

− −

e v = c

v = c+ +

(b)

Figure 2.3. Particle a) and beam b) moving on axis in a perfectly conducting wall vacuum
chamber. Image charges are shown on the wall.

the pipe be smooth1. The solution again of the Gauss’s and Ampere’s laws leads
to the same equations 2.2 and 2.3, but with the field lines perfectly terminating
on the pipe wall (Fig. 2.3(b)). The image charges on the wall is exactly equal and
opposite to that of the particle (or the beam), moving with the same velocity v = c
in the same direction. The entire field pattern moves with it and no field are left
behind. Both in free space or in perfectly conducting pipe, the dependece of 2.4 on

1This means that it has no discontinuities.
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δ(s − ct) makes the ultrarelativistic particle not to feel any effect from the fields
carried by other particles in the beam. This is unless any two particles move side by
side exactly at the same longitudinal position, in which case however electric and
magnetic fields cancel exactly thus producing no Lorentz force on the particles. To
illustrate the above statement, consider the “test charge” depicted in Fig. 2.3(b),
which moves with the beam and has the same charge sign, v = c. This particle will
experience two forces, the electrical ~FE = e · ~E due to the electric field of the beam,
directed radially, and the magnetic ~FB = e(~v× ~B)/c directed along the azimuthal
direction, by means of the right hand rule. ~FE will push the charge e towards the
pipe wall whereas ~FB will point towards the pipe axis, but in the ultrarelativistic
limit

∣∣∣ ~E∣∣∣ =
∣∣∣ ~B∣∣∣ and the two forces cancel exactly. As a consequence, it can be stated

that if the beam is ultrarelativistic, the vacuum chamber is smooth and perfectly
conducting, no collective instabilities can occur.

When there is a discontinuity in the conducting vacuum chamber, the image
charges moving along the pipe have now to move around a corner. It is a well
estabilished result of the electromagnetic theory that when a charge is bent it
radiates. Thus additional electromagnetic fields are generated as the radiation fields
of the image charges when their trajectory is bent. Because of causality, such fields
exist behind the particle and thus are called wake fields. This physical mechanism is
illustrated in Fig. 2.4 and Fig. 2.5.

(a) (b)

Figure 2.4. Charged beam passing through a) a smooth pipe and through b) a pipe with
discontinous sturcure [22]. Only in the latter case wake fields are generated, as specified
in Fig. 2.5.

An intense beam will generate a strong wakefield and the stronger the wakefield
the more the beam can become unstable. Wakefields will perturb the motion of the
following particles, called witness. This way a particle can experience an “effective”
electromagnetic field given by the sum of the one produced by the external lattice
elements of the accelerator, and the other being the wakes produced by the particles
in front interacting with the vacuum chamber, so that [23]:

( ~E, ~B)effective = ( ~E, ~B)external + ( ~E, ~B)wakes.
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(a) (b) (c)

Figure 2.5. Wake fields generated as the the beam passes along the axis of a discontinous
vacuum chamber. In the smooth region in a) no wake fields generate; they start to
propagate as soon as the beam approaches the discontinuity in b) and continue propagate
inside the structure when the beam as passed away in c) [22].

The two fields summed on the right hand side (RHS) of the equation differs in
( ~E, ~B)external being beam intensity indipendent, while ( ~E, ~B)wakes being proportional
to beam intensity. The wakes’ influence on the beam can be trated as a perturbation
if the condition ( ~E, ~B)wakes � ( ~E, ~B)external is satisfied. The wake fields generated
in the case of perfectly conducting vacuum chamber walls, due to its geometrical
discontinuities only, are referred to as “geometric wake fields” [25].

If the vacuum chamber wall is still smooth but has finite constant electric
conductivity σ (i.e. it is resistive), the so called “resistive wall” (RW) wake fields are
generated. To understand the physical mechanism a brief recall of the main results of
Maxwell equations is needed, as illustrated in Fig. 2.6. Electric and magnetic fields

Equation of continuity

Maxwell equations

ρ, σ ~J, ~K

~E ~B

driving driving

Figure 2.6. A logical sketch of the physical content of Maxwell equations. By definition,
metals have ρ = 0 and ~J = σ ~E, whereas insulators have ~J = 0 and ρ = ε ~∇ · ~E.

are driven by, respectively, charges and currents. The interplay between electric and
magnetic fields is governed by Maxwell equations, while that of charge and current
by the equation of continuity. In the case of metals, charges stay on the surface and
are not allowed inside, while currents stay near the surface and do penetrate into
the conductor. The parameter quantifying how much they do penetrate is the skin
depth

δskin = c√
2πσ|ω|

, (2.6)
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where σ is the finite conductivity of the metal and ω the frequency of the electromag-
netic field. For insulators, instead, no currents but charges are allowed to stay inside.
Thus the physical mechanism giving rise to RW wake fields lies on electric field
lines being terminated by a surface charge on the wall surface and on the magnetic
field being cancelled by a surface current, when the beam’s image charges flow on
the vacuum chamber wall. While electric field is terminated by surface currents,
magnetic field is “mostly” cancelled, because currents have penetrated the wall by a
skin depth. The image currents can re-surface from the chamber wall after the point
charge has past and drive new magnetic fields that in turn drive new electric fields
by Maxwell equations. In the case of RW wake fields, they are mainly magnetic fields
contributing to transverse wake force, while the associated electric field contributes
to longitudinal wake force.

The qualitative discussion on the origin of wake fields will be exploited in mathe-
matical detail in the next section, where the concept of beam coupling impedance will
arise. This will allow to gain useful informations on the beam dynamics in presence
of wake fields and to analyze the beam dynamics subtended to those collective
instabilities the work described in the next chapters will concern with.

2.2 Panofsky-Wenzel theorem and Wake functions

2.2.1 Basic approximations

Two basic approximations are introduced in order to simplify the mathematical
description of wake functions, the rigid bunch and the impulse approximations [22].

In the rigid bunch approximation, the beam traversing through the vaccum
chamber is assumed to be not affected by its discontinuities. Looking at Fig. 2.7,
s is the distance of the source particle along the vacuum chamber axis, from an
arbitrary reference point. Let the source particle be at s = βct and the following
(here called witness) particle at s = z + βct, with z < 0 to indicate that the witness
stays behind the source. Being the bunch rigid, both z and βc do not change after
traversing the discontinuity, even if synchrotron motion is still allowed.

z

~v switness
source

Figure 2.7. The rigid bunch approximation. Both distance between source and witness par-
ticles, z, and particles velocity, βc, do not change during vacuum chamber discontinuities
traversal.

Let q be the witness particle charge. The impulse approximation relies on nothing
of the single ~E or ~B components of the wake field or wake force ~F in theirselves
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being considered, but only the change in impulse of the witness particle

∆~p =
∞∫
−∞

~F dt =
∞∫
−∞

q( ~E + ~v × ~B) dt. (2.7)

2.2.2 The Panofsky-Wenzel theorem

Let the Maxwell equations be rewritten for the witness particle at (x, y, s, t), with z
constant and s = z + βct,

~∇ · ~E = ρ

ε0
(2.8)

~∇× ~B = µ0βcρŝ (2.9)
~∇ · ~B = 0 (2.10)

~∇× ~E = −∂
~B

∂t
, (2.11)

where ŝ is the unit vector of the s direction.
Given the Lorentz force definition in eq. 2.1, the Panofsky-Wenzel theorem arise

quite naturally from eqs. 2.8- 2.11 written for the change in impulse ∆~p(x, y, z, t).
For instance, the calculation of the divergence and curl of Lorentz force leads to:

~∇ · ~F = q( ~∇ · ~E + ~∇ · ~v × ~B) =

= qρ

ε0
− q~v

(
1
c2
∂ ~E

∂t
+ µ0βcρŝ

)
= qρ

ε0γ2 −
qβ

c

∂Es
∂t

, (2.12)

and

~∇× ~F = q ~∇× ~E + q ~∇× (~v × ~B) =

= −q∂
~B

∂t
+ q~v( ~∇ · ~B)− qv∂

~B

∂s
= q

(
∂

∂t
+ v

∂

∂s

)
~B = q

d ~B
dt . (2.13)

For the curl of the impulse

~∇×∆~p(x, y, z) =
∞∫
−∞

[ ~∇× ~F (x, y, s, t)]s=z+βct, (2.14)

where the first ~∇ operator on the left hand side acts on (x, y, z) coordinates, while
on the second right hand side acts on (x, y, s) coordinates, the eqs. 2.12 and 2.13
give:

~∇×∆~p = −q
∞∫
−∞

[(
∂

∂t
+ βc

∂

∂s

)
~B(x, y, s, t)

]
s=z+βct

dt =

= −q
∞∫
−∞

d ~B
dt dt = −q ~B (x, y, z + βct, t)

∣∣∣∣∞
t=−∞

= 0. (2.15)
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Taking the dot and cross product of ~∇ × ∆~p with ŝ returns into the following
relations:

ŝ · ( ~∇× ~p) = 0
∂∆px
∂y

= ∂∆py
∂x

(2.16)

ŝ× ( ~∇× ~p) = 0
∂∆~p⊥
∂z

= ~∇⊥∆ps, (2.17)

the last one being recognized as the Panofsky-Wenzel theorem, which gives strong
restrictions on longitudinal and transverse motions and does not depend on any
boundary condition.

2.2.3 Decomposition into modes and Wake functions definition

In order to further break down the complicated wake fields, the problem of a vacuum
chamber with cylindrical symmetry is analyzed. This allows some simplifications,
but also to gain very general results useful to analyze wake fields in any structure,
no matter of their shape. Inside such a beam pipe, all the above quantities can
be expanded in Fourier series of cos(mθ) and sin(mθ), where θ is the azimuthal
coordinate and m a non-negative integer. Writing

∆ps = ∆~ps cos(mθ)
∆pr = ∆~pr cos(mθ)
∆pθ = ∆~pθ cos(mθ),

~ps, ~pr and ~pθ being θ-indipendent, and taking β = 1, the components of ∆~p curl and
divergence become:

∂

∂r
(r∆pθ) = ∂∆pr

∂θ
∂∆pr
∂z

= ∂∆ps
∂r

∂∆pθ
∂z

= 1
r

∂∆ps
∂θ

∂

∂r
(r∆pr) = −∂∆pθ

∂θ
,

thus
∂

∂r
(r∆~pθ) = −m∆~pr (2.18)

∂∆~pr
∂z

= ∂∆~ps
∂r

(2.19)

∂∆~pθ
∂z

= −m
r

∆~ps (2.20)

∂

∂r
(r∆~pr) = −m∆~pθ. (2.21)
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The components ∆~pr and ∆~pθ are equal to zero for m = 0, while the the only non
zero component is ∆~ps. For m 6= 0 ∆~pr and ∆~pθ are proportional to r−1 and

∂

∂r

[
r
∂

∂r
(r∆~pr)

]
= m2∆~pr, (2.22)

which implies
∆pr(r, θ, z) ∼ mrm−1 cos(mθ). (2.23)

Thus the Maxwell equations’ solutions, for the change in impulse of the witness
particle inside a cylindrical symmetric vacuum chamber, can get the following forms

v∆~p⊥ = −qQmWm(z)mrm−1(r̂ cos(mθ)− θ̂ sin(mθ)), ∀m (2.24)
v∆ps = −qQmW ′m(z)m cos(mθ), ∀m (2.25)

in which Wm(z) and W ′m(z) are, respectively, the transverse and longitudinal wake
function of the azimuthal number m. They depend on the longitudinal distance
between the source and the witness particle only, z, and not on the azimuthal angle
θ, and are related to each other by means of the Panofsky-Wenzel theorem. Owing
to this latter and to the rigid bunch and impulse approximations, the solution of the
electromagnetic wake fields ~E and ~B are now reduced to the solution of the wake
function Wm(z) only. The negative sign in front of eq. 2.24 means that the witness
particle loses energy from the impulse, so as W ′m(z) > 0.

Eq. 2.24 stands for the change in impulse of a witness particle of charge q,
due to a source particle of charge e, at a deviation a from the axis of a cylindrical
symmetric vacuum chamber. Qm = eam is the m multiple of the source particle and
v∆~p has the dimension of energy, so Wm(z) has dimension of V/C/m2m−1. The
wake fields can be decomposed into transverse modes, according to the following
table: In a cilindrical vacuum chamber, the m-th mode wake field can be driven

m mode
Longitudinal

Wakes
Moments

of the driving beam
0 monopole −eqW ′0(z) q
1 dipole −eq < x > xW ′1(z) q < x >

dipole −eq < y > yW ′1(z) q < y >
2 quadrupole −eq < x2 − y2 > (x2 − y2)W ′2(z) q < x2 − y2 >

skew quadrupole −eq < 2xy > (2xy)W ′2(z) q < 2xy >
3 sextupole −eq < x3 − 3xy2 > (x3 − 3xy2)W ′3(z) q < x3 − 3xy2 >

skew sextupole −eq < 3x2y − y3 > (3x2y − y3)W ′3(z) q < 3x2y − y3 >

Table 2.1. Longitudinal wake fields decomposition into modes, due to charged beam
momenta.

if and only if the driving beam has a multipole moment of order m. Looking at
Table 2.2, for example, for a dipole moment m = 1, horizontal displacement entails
a dipole moment bending force in the horizontal or vertical direction. For m = 2, 3,
the wakes act like quadrupole and skew quadrupole, sextupole and skew sextupole,
respectively.
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m mode
Transverse
Wakes

Moments
of the driving beam

0 monopole 0 q
1 dipole −eq < x > x̂W1(z) q < x >

dipole −eq < y > ŷW1(z) q < y >
2 quadrupole −2eq < x2 − y2 > (xx̂− yŷ)W2(z) q < x2 − y2 >

skew quadrupole −2eq < 2xy > (yx̂+ xŷ)W2(z) q < 2xy >
3 sextupole −3eq < x3 − 3xy2 > [(x2 − y2)x̂− 2xyŷ]W3(z) q < x3 − 3xy2 >

skew sextupole −3eq < 3x2y − y3 > [2xyx̂+ (x2 − y2)ŷ]W3(z) q < 3x2y − y3 >

Table 2.2. Transverse wake fields decomposition into modes, due to charged beam momenta.

2.2.4 General properties of Wake functions

A simple sketch of longitudinal and transverse wake functions, W ′m(z) and Wm(z),
is reported in Fig. 2.8. The longitudinal wake function starts from a positive

W ′
m(z)

z

(a)

Wm(z)

z

(b)

Figure 2.8. a) longitudinal and b) transverse wake functions, showing their different
starting values.

value, while the transverse one from zero. Consistently with the assumptions at the
beginning of the section, z is measured from the source particle in the direction
of longitudinal particle motion, so as for a following witness particle to be z < 0.
This ensures for W ′m(z) to be the derivative of Wm(z) with respect to z. Both wake
functions vanish for z > 0 because of causality, while W ′m(0−) ≥ 0 as a result of
energy conservation. It is noteworthy to say that the finite non zero value of W ′m(0)
and of limz→0−W

′
m(z) represent how much of its own wake the source particle

actually sees.
This latter qualitative statement finds its mathematical proof in the fundamental

theorem of beam loading, formulated by P. Wilson [26], which states that a particle
sees exactly half of its own wake, 1

2W
′
m(0−). To proof the theorem, let a particle of

charge q traverse a thin lossless cavity, exciting it. Assuming f to be the fraction of its
own wake experienced by the particle, it will gain an energy ∆E1 = −fq2W ′m(0−). If
a second particle with the same charge passes the cavity half a cycle later, it will gain
an energy ∆E2 = −fq2W ′m(0−) + q2W ′m(0−), where the contribution −fq2W ′m(0−)
comes from its own wake and q2W ′m(0−) from the wake left behind by the first



2.3 Wake Potentials 24

particle. Thus, being the cavity lossless, the field inside cancels out and

∆E1 + ∆E2 = −2fq2W ′m(0−) + q2W ′m(0−) = 0, (2.26)

which implies f = 1
2 . Adopting the same physical picture used to proof the beam

loading theorem and using its result, another important property of wake functions
can be deduced. If the first particle, indeed, loses an energy 1

2q
2W ′(0−) and the

second 1
2q

2W ′0(−z), the total loss will be q2W ′(0−) + q2W ′o(−z) ≥ 0. If, again, the
second particle brings a charge −q, the total loss will be q2W ′(0−)− q2W ′o(−z) ≥ 0.
Thus bringing the latter two disequalities together, implies

|W ′m(−z)| ≤W ′m(0−), (2.27)

which means that W ′m(z) is bounded by the value at 0− for all z 6= 0. If W ′m(−D) =
W ′m(0−) for some D > 0, the wake is periodic with period D2. Let’s take into
consideration a dc beam current I. Then, for a beam particle of charge q the energy
loss would be q

∫
W ′0(z)I/v dz ≥ 0, so as the area under W ′m(z) is non negative.

Finally, it must be noticed that from eqs. 2.24- 2.25 results clear that the most
important mode for the longitudinal wake is the lowest azimuthal for m = 0, W ′0(z),
while for the transverse it is the lowest for m = 1, W1(z). Higher azimuthal modes
can be relevant for large transverse beam sizes with respect to beam pipe radii.

2.3 Wake Potentials
Similar to the description of the wake fields excited by charged particles by means
of wake functions, wake potentials are the integrals of the electromagnetic forces
exerted by wake fields excited by a bunch of particles of finite length, at the position
of a following witness particle. In this case, instead of measuring the distance of
the witness particle from the source one, the distance of the witness particle from
the bunch center will be of concern. For any bunch of arbitrary shape, the wake
potentials can be found as the convolution of the wake functions with the normalized
line density

∞∫
−∞

λ(τ) d(τ) = 1, (2.28)

where τ is the time of arrival of a reference particle at a designated point in the
accelerator ring ahead of the synchronous particle. The longitudinal wake potential
is given by

W λ
‖ (τ) =

∞∫
0

W ′0(t)λ(τ − t) dt , (2.29)

where the integration can be taken from 0 to ∞ because the wake function of a
particle vanishes in front of it (t < 0, z > 0)3. So the wake functions come out to be
the wake potentials of a delta function distribution, thus Green functions for the
wake potentials of finite charge distributions in the considered structure.

2For a proof of this assertion, the textbook by K. Y. Ng is referred [23].
3This is because of causality, as discussed in section 2.2.4.
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The transverse wake potential can also be found, given the transverse wake
function for a particular geometry. In this case, assuming a constant displacement
of the bunch from the longitudinal axis, the convolution with the charge density
returns to be

W λ
⊥(τ) =

∞∫
0

Wm(t)λ(τ − t) dt , (2.30)

with m 6= 0. If the assumption of the constant displacement of the bunch from the
traveling axis cannot be taken anymore as valid, with different parts of the bunch
having different displacements ξ(τ), then the equation 2.30 must be replaced by

W λ
⊥(τ) = 1

ξ̄

∞∫
0

Wm(t)ξ(τ − t)λ(τ − t) dt , (2.31)

where the first moment of the distribution function, ξ(τ)λ(τ), has been used and
the whole expression has been divided by the average displacement ξ̄.

The computation of the wake functions for point charges is generally a very
complicated task, affordable only in few cases for simplified structures for which an
analytical solution can be found. Usually cylindrycal pillbox cavities accomplish this
condition. For arbitrary (and in many cases, very complicated) geometries, the wake
functions calculations cannot be performed with sufficient accuracy, making the
calculation of the wake potentials for finite bunches the only practicable approach
to the problem. Then, given a finite bunch length σz, limσz→0 λ(s, σz) = δ(s), thus
the wake functions for a particular geometry of interest could also be, in principle,
approximated by the wake potentials calculated for a bunch length as short4 as
reasonably allowed by the computer code used.

2.4 Beam coupling Impedance

2.4.1 Longitudinal impedance

Beam particles form current. For the following discussion a current harmonic
component with frequency ω, I(s, t) = Îe−iω(t−s/v), will be considered5. As the
wake functions describe the wake effects in the time domain, impedances do it in
the frequency domain. This is useful expecially for accelerator rings, where beam
particles traverse the same positions periodically in time (also several millions of
times per second). Let a particle of charge q traverse a discontinuity in the vacuum
chamber at some position si along the chamber axis. According to Fig. 2.9, that
particle will experience the wake left by the particles −z in front, gaining a voltage

4Short means much lower than the “nominal” bunch length, i.e. the bunch length at which wake
potentials are currently calculated. As an example, the nominal bunch length of LHC beams is
σz = 7.5 cm. Wake functions, for instance, could be approximated by a wake potentials calculation
for a bunch length, say, of the order of 1 mm.

5The Fourier harmonic of a function f(t) is defined as f̂ = f(ω) ≡
∞∫
−∞

f(t)eiωt dt.
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~v

s

z
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~v
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Figure 2.9. The particle beam moves to the right. The source particle is in red, the witness
in black. Witness particle crosses the discontinuity ad si at time t, after the source has
already passed at earlier time t+ z

v , experiencing the wake this latter left behind. It has
to be recalled that z is negative from source to witness particle.

(m = 0)

V (s1, t) = −
∞∫
−∞

[W ′0(z)]i
[
Îe−iω[(t+z/v)−s1/v] dz

v

]
= (2.32)

= −I(s1, t)
∞∫
−∞

[W ′0(z)]ie−iωz/v
dz
v
, (2.33)

where the definition of the longitudinal impedance [Z‖0(ω)]i at location si can be
identified. For instance, if the potential accross the discontinuity at s1 is written as
V (s1, t) = V̂1e

−iω(t−s1/v), the above equation simplifies to

V̂1 = −Î
∞∫
−∞

[W ′0(z)]ie−iωz/v
dz
v
≡ −Î[Z‖0 (ω)]i. (2.34)

Therefore the longitudinal impedance of azimuthal mode m = 0 over one turn of the
accelerator ring follows directly from eq. 2.34, summing up over all i discontinuities

Z
‖
0 =

∞∫
−∞

W ′0(z)e−iωz/v dz
v
, (2.35)

where Z‖0 =
∑
i

[Z‖0 (ω)]i and W ′0(z) =
∑
i

[W ′0(z)]i.
Having beams also transverse dimension, they bring higher azimuthal multipoles,

as specified in Tables 2.1 and 2.2, that become crucial when the beam is off-center
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by an amount a. The mth current multipole is Qm(s, t) = I(s, t)am = Q̂e−iω(t−s/v)

and the corresponding mth multipole element is Qm(s, t) dz /v. Following the above
discussion about the m = 0 case for the wake left behind an on-axis source particle
and experienced by a witness on-axis particle, traversing a discontinuity ad location
si, a test particle at the same location si at time t, would now experience a mth
azimuthal wake left behin by a mth multipole element passed a time − z

v earlier.
Being δ(r−a)δ(θ)

a the particle density needed to integrate over all particles, in the
beam, which are off-axis by a, the gain in voltage of the witness particle will now be

V (si, t) = −
∫
Qm(si, t+ z/v)[W ′m(z)]i

dz
v

∫
rm cos(mθ)δ(r − a)δ(θ)

a
r dr dθ =

= −
∫
Q̂me

−iω[(t+z/v)−s/v][W ′m(z)]iam =

= −Pm
q
Qm(si, t)

0∫
−∞

[W ′m(z)]ie−iωz/v
dz
v
, (2.36)

with Pm = qam. Again as for the m = 0 case, given the mth multipole longitudinal
impedance at location i

[Z‖m(ω)]i = − qV̂
Pm

Q̂m =
∞∫
−∞

[W ′m(z)]ie−iωz/v
dz
v
, (2.37)

the whole ring longitudinal impedance will be given by the sum Z
‖
m =

∑
i

[Z‖m(ω)]i.

2.4.2 Transverse impedance

If in the above eqs. 2.33 and 2.37 the longitudinal wake functionsW ′m(z) are replaced
by the transverse ones Wm(z), the definition of transverse impedance immediately
follows

Z⊥m(ω) = i

β

∞∫
−∞

Wm(z)e−iωz/v dz
v
. (2.38)

Owing to the Panofsky-Wenzel theorem, longitudinal and transverse impedances are
related by

Z‖m(ω) = ω

c
Z⊥m(ω). (2.39)

Both Z‖m(ω) and Z⊥m(ω) are complex functions of ω and their real parts, Re
{
Z
‖
m(ω)

}
and Re

{
Z⊥m(ω)

}
represent an energy gain or loss. They are recognized as the real

resistive component of the impedance. In order for Re
{
Z⊥m(ω)

}
to dissipate energy,

the transverse force F⊥ ∝ −Wm must have a phase shift of π2 with respect to Qm,
that is why of the factor i in front of eq. 2.38.

2.4.3 General properties of impedances

In addition to the consequence of the Panofsky-Wenzel theorem for the impedance,
eq. 2.39, other properties characterize this quantity, like those already shown for
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the wake functions. For instance, because the function Wm(z) is real, it follows that
Z
‖
m(−ω) = [Z‖m(ω)]? and Z⊥m(−ω) = −[Z⊥m(ω)]?. The equations defining longitudinal

and transverse impedances, eqs. 2.37 and 2.38, can be managed to write down the
expressions for W ′m(z) and Wm(z) as functions of Z‖m(ω) and Z⊥m(ω):

W ′m(z) = 1
2π

∞∫
−∞

Z‖m(ω)eiωz/v dω (2.40)

Wm(z) = − iβ2π

∞∫
−∞

Z⊥m(ω)eiωz/v dω , (2.41)

in which the causality requires W ′m(z) = Wm(z) = 0,∀z > 0. Thus it follows that
both Z‖m(ω) and Z⊥m(ω) are analytic functions of ω, with poles in the upper half
ω-plane only. Being the upper half ω-plane free of singularities6, Hilbert transforms
of Z‖m(ω) and Z⊥m(ω) result in

Re
{
Z‖m(ω)

}
= 1

2πP
∞∫
−∞

Im
{
Z
‖
m(ω′)

}
ω′ − ω

dω′ (2.42)

Im
{
Z‖m(ω)

}
= − 1

2πP
∞∫
−∞

Re
{
Z
‖
m(ω′)

}
ω′ − ω

dω′, (2.43)

and

Re
{
Z⊥m(ω)

}
= 1

2πP
∞∫
−∞

Im
{
Z⊥m(ω′)

}
ω′ − ω

dω′ (2.44)

Im
{
Z⊥m(ω)

}
= − 1

2πP
∞∫
−∞

Re
{
Z⊥m(ω′)

}
ω′ − ω

dω′, (2.45)

P being the principal value. If the beam pipe has the same entrance and exit
cross-section, there will be no trapped wake fields inside the pipe, resulting in
no accelerating forces generating from the pipe itself, thus Re

{
Z
‖
m(ω)

}
≥ 0 and

Re
{
Z⊥m(ω)

}
≥ 0. Finally, recalling the Panofsky-Wenzel theorem and that Wm(z) =

0 at z = 0 , the following equalities hold for the imaginary parts of longitudinal and
transverse impedances, due respectively to the two conditions just mentioned:

∞∫
0

Im
{
Z
‖
m(ω)

}
ω

dω = 0

6Many textbooks and reviews on beam coupling impedances use the so called “engineering”
convention j = −i, thus using ejωt instead of eiωt factor in the Fourier transforms. In that case
all the above and following impedance properties remain the same, given the exponential factor
convention is accordingly applied, apart from no singularities existing in the lower half ω-plane.
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and ∞∫
0

Im
{
Z⊥m(ω)

}
dω = 0.

It must be pointed out that because of analyticity, both Re
{
Z
‖
0 (ω)

}
/ω and Re

{
Z⊥1 (ω)

}
must vanish at ω = 0. The physical reason for this to happen is that at ω = 0 no
Faraday-Lenz’s law (eq. 2.11) exists, establishing no relation between ~E and ~B fields.
This means that no dc loss occur and because no image currents are created, no
beam coupling impedance does arise.

2.4.4 Resonator impedance

Cavity structures usually show an impedance behaviour in frequency consisting of
many resonant peaks, mainly due to trapped modes. These latter are electromagnetic
field resonances with frequencies below the lowest cutoff frequency of the beam
pipe. A parallel RLC resonator circuit, consisting of a resistance, an inductance
and a capacitance, can be used to approximate each of these resonances [27]. The
admittance of such a circuit can be easily calculated from the elementary circuit
theory as

Y (ω) = G+ i
1
ωL
− iωC, (2.46)

where G = Rs is the conductance of the circuit (not to be confused with the
conductance of the metallic wall), Rs being usually recognized as the shunt impedance,
L is the inductance and C the capacitance. From eq. 2.46 the complex impedance
of the parallel resonator circuit directly follows,

Z‖(ω) = Rs
1− iQr(ω/ωr − ωr/ω) , (2.47)

where ωr = 1/
√
LC is the resonant frequency, i.e. the frequency at which the

real part of the impedance reach the maximum Re
{
Z‖
}

= Rs while its imaginary
part vanishes and Qr = Rs

√
C/L is the quality factor. When the wall resistivity

increases Qr decreases, the shunt impedance being inversly proportional to the
wall resistivity. The difference between the maximum and minimum frequencies
delimiting the range where the impedance reaches half of its maximum is defined as
the resonance bandwidth ∆ω, related to Qr by Qr = ωr/∆ω. For ω → 0 the real
part of the impedance vanishes quadratically as ω2Rs/ω

2
rQ

2
r , and the impedance is

purely imaginary reactive. For ω = ωr, the impedance is purely real and equal to
Rs. The real part of the impedance is always positive.

For cavities made by good metallic conductors, usuallyQr � 1 and the impedance
shows many well distinguishable resonant peaks, due to parasitic Higher Order Modes
(HOMs), and thus is generally referred to as narrow-band impedance. Its expression
can be simplified near the resonance. For small deviation from ωr, ζ = δω/ωr � 1,
indeed, it is given by

Z‖(ω) ≈ Rs
1− 2iQrζ

= Rs
1 + 2iQrζ

1 + (2Qrζ)2 , (2.48)
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for which the real part reaches its half maximum at ζ = ±ωr/2Qr.
The narrow-band impedance may be described as a sum of narrow resonances.

Each resoncance is produced by a localized mode whose frequency is below or not
much above the cutoff frequency of openings present in the structure. In the time
domain, this corresponds to a slowly decaying oscillating wake potential. Above the
cutoff frequency, in the high frequency region, the resonances overlap producing a
smoothfrequency dependence of the impedance. In the time domain this corresponds
to the short range behaviour of the wake potential. The high-frequency impedance
is significant if the bunch length is small compared to the beam pipe radius. It
describes the interaction of particles due to the presence of abrupt changes of the
beam pipe cross section and of high-frequency tails of resonant structures. If the
bunch length is larger then the beam pipe radius, the detailed behaviour of the
high-frequency impedance can be approximated by a smooth function generally
referred to as broad-band impedance. All vacuum chamber gaps and breaks, joints,
Beam Position Monitors (BPMs), bellows, tapers, can be lumped into a term of
the type of eq. 2.47, with Qr ≈ 1 and ωr ≈ ωc, ωc being the beam pipe cutoff
frequency. Just as an example, in Fig. 2.10 a schematic behaviour of the transverse
impedance is shown, with the real and imaginary parts being odd and even functions
of frequency, respectively.

Figure 2.10. General behaviour of the transverse broad-band and narrow-band impedance
for an arbitrary accelerator ring. Solid lines represent real parts whereas dashed lines
imaginary parts (picture adapted from S. Y. Lee’s book [28]).

Broad-band impedances and, thus, wake potentials, can be resistive, inductive
or capacitive, depending on the dominant term in eqs. 2.46 and 2.47 [29].

In the resistive case, the impedance is given by a broad-band resonator at
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frequency ωr ≈ ωb, where ωb = c/σz is the cutoff frequency of the bunch of length
σz. The real part of the impedance dominates, with Re

{
Z‖(ω)

}
≈ const., while

the imaginary part switches sign for frequencies below ωr and frequencies above ωr,
which partly cancel each other.

For the inductive impedance, ωr is far above the cutoff frequency of the bunch and
the impedance is dominated by its negative imaginary part, which grows proportional
to ω in the frequency range of the bunch, Im

{
Z‖(ω)

}
∝ −ω. The wake fields transfer

energy from the head to the tail of the bunch. The overall energy loss is proportional
to the real part of the impedance and can be neglected.

For the capacitive impedance, the resonance frequency is much lower than ωb
and the impedance is dominated by the capacitor Im

{
Z‖(ω)

}
∝ ω−1, while the real

part due to the resistivity is proportional to 1/ω2 . As an example for a qualitative
analysis of the different impedance behaviours, the inductive, resistive and capacitive
action on impedance and cprresponding wake potential, of a single resonant mode,
is shown in Fig. 2.11, for quality factors Qr = 100, 0.5, 10 respectively. Given
the bunch distribution in frequency and time domain (for the impedance and wake
potentials, respectively), reported in dotted lines, it is clear that for the inductive
impedance the response lags in phase behind the excitation, while for the capacitive
one the response is ahead of the excitation.

2.4.5 Bunch modes

Particles in bunches perform synchrotron oscillations, which are longitudinal periodic
oscillations of the time delay from the the synchronous particle and of energy
deviations about its nominal energy. This phenomenon is due to the applied
radiofrequency voltage and the drift of particles with different energies. It is an
incoherent effect occurring with arbitrary phases, leading to the net effect of generated
external fields cancelling out.

The bunch oscillations as a whole, instead, is a coherent phenomenon, which
generates external electromagnetic fields that interact with the vacuum chamber
wall. In the longitudinal phase space τ −∆E, where τ is the arrival time of the
beam particle ahead of the synchronous particle, and ∆E the energy deviation, such
oscillations are characterized by the bunch shape mode number m, for the azimuthal
φ-coordinate7, as sketched in Fig. 2.12. The bunch stationary mode corresponds to
m = 0, while the dipole, quadrupole, sextupole etc. modes correspond to values
of m = 1, 2, 3..., m giving also the number of nodes where the bunch line density
vanishes, as also shown in the lower part of Fig. 2.12. Dipole mode oscillation is
usually observed when the injection of the beam occurs with a phase error, whereas
the quadrupole mode occurs in case of a mismatch between the bunch and the RF
bucket.

It is possible to derive analytically the bunch spectrum modes, following the
arrival time τ of a particle ahead of the synchronous particle, at a fixed location
along the accelerator ring. If θ is the azimuthal angle of the location along the ring

7Because the beam particles execute synchrotron oscillations, it is more convenient to use circular
coordinates (r, φ) in the longitudinal phase space, defined as τ = r cos(φ) and pτ = r sin(φ), pτ
being the particle conjugate momentum.
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Figure 2.11. Impedance (up) and wake potential (down) for single modes acting on a bunch
mainly inductively, resistively and capacitively. Solid curves represent real part of the
impedances, dashed ones the imaginary part and the dotted line the bunch distribution
in frequency and time domains.

Figure 2.12. Top, azimuthal synchrotron modes of a bunch in the longitudinal phase space
and, bottom, as linear density [23].

the signal recorded, for example, by a wall-gap monitor placed at θ0 = 0 will be

I(τ̂ , φ, s) = ev
∞∑

k=−∞
δ

[
s+Rθ0 − kC0 − vτ̂ cos

(
ωss

v
+ φ

)]
, (2.49)
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where C0 is the length of the closed orbit followed by the synchronous particle with
velocity v, R its mean radius, ωs the synchrotron frequency and τ̂ the amplitude
of synchrotron oscillation reflected in the cosine term. The synchrotron oscillation
amplitude is usually small, i.e. vτ̂ � C0, so that it is possible to substitute s = kC0
in the cosine term of eq. 2.49. Moreover, given the integral representation of the
δ−function and the relations

ejx cosφ =
∞∑

m=−∞
(−j)mJm(x)e−jmφ; 1

2π

∞∑
k=−∞

ejkθ =
∞∑

n=−∞
δ(θ − 2πn) (2.50)

for the mathematical formula of Bessel functions, on the left, and the Poisson formula,
on the right, eq. 2.49 can be written as

I(τ̂ , φ, s) = e

2π

∞∫
−∞

∞∑
k=−∞

ej[s−kC0−τ̂ v cos (kωsC0/v+φ)]ω/v dω =

= e

2π

∞∫
−∞

∞∑
k=−∞

∞∑
m=−∞

(−j)mJm(ωτ̂)ej(s−kC0)ω/vejm(kωsC0/v+φ) dω =

= e

T0

∞∫
−∞

∞∑
n=−∞

∞∑
m=−∞

(−j)mJm(ωτ̂)δ(ω − nω0 −mωs)ejmφejωs/v dω =

= e

T0

∞∑
n=−∞

∞∑
m=−∞

(−j)mJm[(nω0 +mωs)τ̂ ]ejmφej(nω0+mωs)s/v, (2.51)

where T0 = 2π/ω0 is the revolution period of the synchronous particle. Thus
the spectrum is composed of synchrotron sidebands on both sides of the revolution
harmonics, whose amplitudes are given by the Bessel functions Jm. To observe m−th
order sidebands, one should go to a frequency where Jm(nω0τ̂) has a maximum, or
at nω0τ̂ ∼ m. The spectrum of a beam particle performing synchrotron oscillations
is reported in Fig. 2.13.

Magnetic quadrupoles are always present in an accelerator ring, in order to
achieve transverse focusing of the beam that otherwhise would hit the vacuum
chamber and get lost. They can focus in one transverse plane only, defocusing in
the other. For this reason, the beam has also transverse motion. Thus transverse
oscillations develop in both transverse planes and are called betatron oscillations with
betatron frequencies ωβ/2π, different in the two transverse planes. The betatron tune
is defined as the number of betatron oscillations made by the beam in a revolution
turn, νβ = ωβ/ω0. The transverse motion of a beam is commonly monitored by a
system of BPMs. Thus, in analogy to the discussion preliminary to eq. 2.49, it is
possible to write down the transverse displacement of a charged particle registered
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Figure 2.13. Spectrum of a beam particle performing synchrotron oscillations, in the
positive frequency range only and for ωτ̂ = 0.4 which is usually a large value. The m−th
revolution harmonic is bounded by the Bessel function of order m, Jm [23].

at a BPM at position θ0 along the ring, as

d(ψ, θ, t) = eω0A cos (νβω0t+ ψ)
∞∑

p=−∞
δ(ω0t− θ + θ0 − 2πp) =

= eω0A

2π cos (νβω0t+ ψ)
∞∑

n=−∞
ej(nω0t−nθ+nθ0) =

= eω0A

2π

∞∑
n=−∞

{
ej[(n+νβ)ω0t−n(θ−θ0)+ψ] + ej[(n−νβ)ω0t−n(θ−θ0)−ψ]

}
=

= eω0A

2π

∞∑
n=−∞

{
ej[(n+νβ)ω0t−n(θ−θ0)+ψ] + e−j[(n+νβ)ω0t−n(θ−θ0)+ψ]

}
=

= eω0A

2π

∞∑
n=−∞

cos [(n+ νβ)ω0t− n(θ − θ0) + ψ] =

= eω0A

2π

∞∑
n=−∞

cos [(n− νβ)ω0t− n(θ − θ0)− ψ], (2.52)

where A is the amplitude of the betatron oscillation and ψ is the betatron phase
at time t = 0. The last two equations above show that both positive and negative
harmonics can be dealt with, so both upper and lower sidebands can appear, as shown
in Fig. 2.14. Because BPMs and network analyzers monitor positive frequencies
only, it is common convention to talk about upper sidebands only and for the dipole
current registered by the BPM the second to last expression in eq. 2.52 is assumed.
It consists of waves with phase velocity

ωph = (1 + νβ)ω0, n 6= 0, (2.53)

which in turn corresponds to two type of waves, fast waves with n > 0 and ωph > ω0
and slow waves with n < 0 and ωph < ω0. Actually the betatron tune has an integer
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Figure 2.14. Upper and lower betatron sidebands spectra of a single particle performing
betatron oscillations, with the fast waves in red solid lines and slow waves in black
dashed lines. Both spectra lead to the same physical observation [23].

part and a non integer part, what in addition to fast and slow waves gives rise to
backward waves also. For a detailed discussion of this real case other textbooks are
addressed [22, 23]. What is important to say here is that the distinction between fast
and slow waves is crucial because only slow waves can be susceptible to instabilities,
because of Re

{
Z⊥1 (ω)

}
being an even function of ω, as discussed in section 2.4.3.

The two above discussions about synchrotron and betatron oscillations were
exploited referring to a single particle in a bunch. For many particles, both the
current I(τ̂ , φ, s) and the dipole moment d(ψ, θ, t) in eqs. 2.51 and 2.52 respectively,
are obtained summing up the currents and dipole moments of all particles. In the
case of the dipole moment, because the betatron phase ψ is random among the
particles, this sum will average to zero, which means that all the upper and lower
sidebands will be observable only when excited coherently by a transverse driving
forse, like a kicker or a transverse coupling impedance [23].

2.4.6 Loss factor, kick factor and effective impedance

The energy loss of a bunched beam, caused by both wake fields generated while
traversing vacuum chamber discontinuities and synchrotron radiation, deserves
accurate calculations in order to avoid overheat of sensitive elements that, because
of temperature increase, can suffer deformations or even destruction. These latter
phenomena can occur despite of the whole beam absorption, as in the case of beam
dumps, because the portion of the energy spectrum above the beam pipe cutoff
propagates, in general, out of the cavity-like object, travelling along the pipe.

The calculation of this energy loss is much simplified if the concepts of loss
and kick factors are introduced. The loss factor include the energy loss of the
beam travelling parallel to the reference trajectory. The kick factor (or transverse
loss factor) accounts for the dependence of the energy loss on the beam transverse
displacement with respect to the beam trajectory, describing a localised deflection
exerted on the beam.

Recalling the discussion in section 2.2.4, if a bunch passes through a given
structures, it will suffer an energy change proportional to the square of the charge8,

8The energy change is equal to the product of the bunch charge q and the induced voltage
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written as
∆E = −k‖q2, (2.54)

where k‖ is the (longitudinal) loss factor. In the frequency domain, the energy loss
is given by the integral of the product of the longitudinal impedance Z‖(ω) and the
bunch power spectrum h(ω) = λ̂(ω)λ̂∗(ω), where λ̂(ω) and λ̂∗(ω) are the Fourier
harmonic and the complex conjugate Fourier harmonic, respectively, of the particle
distribution line density λ(z/v). The power spectrum of bunches inside circular
machines is composed of discrete lines, corresponding to multiples of the revolution
frequency ω0, with a spectrum envelope whose width is inversely proportional to the
bunch length. Thus the loss factor is given by the sum

k‖ = ω0
2π

∞∑
p=−∞

Z‖(pω0)h(pω0). (2.55)

As long as the spacing between the spectral lines is small compared to the scale of
impedance variations, the infinite sums in eq. 2.55 can be replaced by integrals. For
short bunches, a broad-band impedance can suffice for the calculation of the loss
factor, because single resonances cannot be resolved in the time of a bunch passage.
Narrow resonances can be important in the case of both long and short bunches,
for example in multiple turn and in multiple bunch regimes, because if one of the
beam spectral lines lies close to a resonance, electromagnetic fields can be excited
coherently and the energy increases quadratically [23]. Thus the power spectrum
will depend also on the bunch shape, i.e. on its rms length σz, so as the loss factor:

k‖(σz) = 1
2π

∞∫
−∞

Z‖(ω)h(ω, σz/v) dω . (2.56)

Given the integral in the above equation extending over both negative and positive
frequencies, it has to be taken into account that the product of an even function
of frequency, as it is always the case for the power spectrum, and an odd one, as
for the imaginary part of the impedance, does not contribute to the integral. So
this latter can be calculated over the positive frequencies and the real part of the
impedance only, as

k‖(σz) = 1
π

∞∫
0

Re
{
Z‖(ω)

}
h(ω, σz/v) dω . (2.57)

For a Gaussian bunch distribution, with rms bunch length σz and normalized linear
density λ̂(ω) = e−ω

2σ2
z/2v2 , the power spectrum is given by h(ω) = e−ω

2σ2
z/v

2 , and
the loss factor by

k‖(σz) = 1
π

∞∫
0

Re
{
Z‖(ω)

}
e−ω

2σ2
z/v

2 dω . (2.58)

The longitudinal loss factor has the dimentions of V/C.

V = −Z‖Ib, where Ib = qω/2π. Thus the voltage is proportional to the charge, and the energy
change to its square.
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A definition analogous to eq. 2.57, for the loss factor, holds for the transverse
kick factor, but given the discussion at the beginning of section 2.4.3 about the
parity of the longitudinal and transverse impedances, it results:

k⊥(σz) = 1
2π

∞∫
−∞

Z⊥(ω)h(ω, σz/v) dω = 1
π

∞∫
0

Im{Z⊥(ω)}h(ω, σz/v) dω . (2.59)

Since Z⊥(ω) is an impedance per unit transverse displacement, the dimensions of the
kick factor are V/Cm. Again, for a Gaussian bunch distribution it results, following
the same derivation of eq. 2.58, for the kick factor:

k⊥(σz) = 1
π

∞∫
0

Im{Z⊥(ω)}e−ω2σ2
z/v

2 dω . (2.60)

As already mentioned in the discussion leading to eq. 2.55, the bunch oscillation
spectrum consists of many discrete lines, spaced by multiples of the revolution
frequancy ω0. For kb equally spaced bunches, only the kth

b line can be excited,
spectral lines being spaced by kbω0, the bunch frequency. In a way analogous to the
definition of loss factors for bunched beams, eq. 2.55, the effective impedance is the
convolution of the coupling impedance and the bunch oscillation spectrum. It is the
effective impedance that is responsible for the coherent stability of bunched beams.

The effective longitudinal impedance for the mth bunch mode can be written as
[30]

Zmeff =
∞∑

p=−∞

Z‖
n

(ωp)Hm(ωp), (2.61)

where ωp = ω0(kbp + nb + mνs) are the spectral frequencies of a beam consisting
of kb bunches equally spaced, νs = ωs/ω0 is the synchrotron tune and 0 ≤ nb < kb
is the coupled bunch mode number describing the phase shift ∆φ = 2πnb/kb
between bunches. In the above equation, Hm(ω) = Cmλ̂(ω)λ̂∗(ω) is the normalized
spectral power density, with normalization constants Cm given by the condition
∞∑

p=−∞
Hm(ωp) = 1.

The effective transverse impedance for the mth longitudinal mode of a dipole
oscillation of a bunched beam, instead, can be written as [31]

Z⊥meff =
∞∑

p=−∞
Z⊥(ωp)Hm(ωp − ωξ), (2.62)

where the spectral frequencies for transverse oscillations are ωp = ω0(p+nb+mνs+νβ)
and ωξ = ω0ξ/η is the chromatic frequency, ξ = Pdνβ

νβdP being the chromaticity, P
the longitudinal particle momentum, η = α − 1/γ2 the slippage factor and α the
momentum compaction factor9.

9All these quantities, in the context of an accelerator model like that shown in Fig. 2.1, are
discussed in detail in Appendix A.
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2.5 Collective effects
Collective effects include incoherent phenomena of many particles and coherent
interactions of the beam with its sorroundings. Both are dependent on the beam
intensity and on the bunch filling patterns, being responsible of beam instabilities,
parasitic losses, beam quality degradation due to emittance growth and poor lifetime
of all or some specific bunches and radio frequency heating of the components
sourrounding the beam.

Single bunch and multibunch (or coupled bunch) instabilities may be driven
by both broad-band and narrow-band impedances, depending on how these latter
couple with the bunch spectrum lines. In the case of the LHC accelerator complex,
a detailed impedance evaluation of all the structures installed around the beams has
been carried out, in order to calculate the beam performances of the collider in the
present configuration and for the future High Luminosity LHC upgrade [13, 14].

2.5.1 Single bunch

Single bunch collective effects arise from the interaction of a bunch with itself, when
the generated wake fields have a range comparable to its length or shorter.

For longitudinal effects, an instability mechanism was already implicitely dis-
cussed in the previous section 2.4.6, about eq. 2.54, which is generally referred to as
parasitic heating. It was shown that only the real (resistive) part of the impedance
contributes to the parasitic loss. Inductive impedances, indeed, do not introduce
a net energy loss to the beam, even if individual particles can change their energy
because of it. However this individual particle energy loss lead to a compensation
between the loss occurring at the head of the bunch and an energy recovery by
particles in the tail, so apart from an energy transfer from the head to the tail of the
bunch, the net effect on the entire bunch is that even if no energy is lost, an energy
spread does appear. Parasitic heating is an effect occurring mainly for high beam
intensities, for short bunches and also for long bunches with full coupling with an
HOM. For instance, the longitudinal resistive wall impedance it is found [22] to be

Z
‖
0
n

∣∣∣∣∣
RW

= [1− i sgn(ω)] R

nbσc

√
µωσc

2 , (2.63)

and the corresponding loss factor

k‖(σ)
L

=
Γ(3

4)c
4π2bσ

3/2
z

(
Z0
2σc

)1/2
, (2.64)

where R is the mean radius of the accelerator ring, µ the magnetic permeability
of the walls of the beam pipe of radius b, L is the pipe length, Γ(3

4) = 1.225 the
Euler Gamma function, Z0 =

√
µ0/ε0 = 377 Ω the impedance of free space, σc

the continuous electric conductivity of the metal pipe wall and σz, as usual, the
rms bunch length. Parasitic loss gives rise to heating of the vacuum chamber wall
where there are impedances, i.e. as the beam traverses a discontinuity. Part of the
generated wakefield is trapped by the structure, if this latter is cavity-like and the
wake’s frequency is below the pipe cutoff. The trapped field energy is deposited
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as heat on the cavity walls, while the wake field portion with frequency above the
cutoff propagates down the pipe and eventually deposits its energy on lossy materials
elsewhere in the vacuum chamber. The most of the parasitic energy loss goes into
heating of the vacuum chamber wall, only a small portion being transferred back
to the beam motion. Thus under favorable conditions, parasitic heating can drive
beam instabilities.

The microwave instability is one of the most commonly encountered in accelerator
rings, but it is triggered more easily for electron machines than for hadron machine
like the LHC. However it is useful to briefly discuss it, in order to introduce the
concept of beam intensity threshold.

If the beam current is large enough to excite this instability, the induced effect is
a bunch length and energy spread increase. At higher currents, indeed, exponential
growth of the ripples caused by the high frequency components of the wake field
in the longitudinal beam density can occur, leading to beam instability. Physically,
a perturbation λ1 of harmonic frquency Ω in the linear beam density causes a
perturbation of the local revolution frequency ω1 and the local beam current I1,
having the same harmonic number n = ω/ω0 and frequency Ω. The perturbed current
I1 interacts with the longitudinal impedance Z‖0 and changes the particles’ energy
E, which in turn drives a change in its revolution frequency ω1. The longitudinal
impedance, in other words, drives a longitudinal force that changes the revolution
frequency. Under Boussard [32] conditions for bunched beams, i.e. the perturbing
wavelength λ1 � σz, the instability growth time τ � Ts the synchrotron period
and the average beam current I0 is substituted by the local peak current Ipk, the
Keil-Schnell stability criterion [33], can be used to establish a threshold for the
bunch current, as

eIpkβ
2
∣∣∣∣∣Z
‖
0
n

∣∣∣∣∣ ≥ 2πEσ2
δ |η|Fdist, (2.65)

where Ipk = FBI0, FB = 2πR/
√

2πσz is the bunching factor, σz the usual rms bunch
length, E the beam energy, η the slippage factor, σδ is the rms beam momentum
spread and Fdist ≈ 1 a factor that generally depends on the longitudinal beam
distribution [23].

It is possible for wakefields to drive also coherent transverse oscillations within a
single bunch. It is a more complicated situation with respect to the longitudinal case,
because of the constant exchange of the head and tail of the bunch via longitudinal
oscillations over a synchrotron period. This continous exchange does not allow
the growth of the oscillation amplitude of the tail to accumulate as quickly, thus
extending the stability threshold. If the transverse wake fields are so intense that the
growth time of the oscillation amplitude of the tail is less than half a synchrotron
period, the bunch becomes unstable and is quickly lost. This mechanism is known
as transverse mode coupling instability (TMCI), for which a threshold for the bunch
current is given by ∣∣∣∣∣∣∣

eIbβ̄⊥ Z
⊥
1

∣∣∣m
eff

2βE0ωsτL

∣∣∣∣∣∣∣ . 1, (2.66)

where β̄⊥ is some reference betatron function so that Z⊥1
∣∣∣m
eff

retains the dimensions
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of transverse impedance, E0 is the average beam particle energy in the bunch and
τL the total time length of the bunch from the head to the tail.

2.5.2 Multi-bunch

Wake fields whose range is long enough to couple the motion of the different bunches
in the beam, can cause coupled bunch instabilities. As already discussed at the
beginning of this section, these instabilities are driven by narrow-band impedances
of high-Q resonators, like RF cavities. Even though they remain localized in the
cavities, they last for a long enough time that the motion of any given bunch is
perturbed by all its predecessors by means of transverse or longitudinal coherent
structure in the bunch-by-bunch oscillations. If these coherent oscillations grow
indefinitely, they lead to rapid beam loss, whereas if they remain bounded, they
degrade the beam quality by inducing emittance growth.

Limiting the present brief discussion to dipole coupled bunch oscillations, these
are characterized by the motion of the bunches about their nominal centers as if
they were rigid macroparticles. The most basic longitudinal instability mechanism
in the multi bunch regime is the Robinson instability [34], for which a very short
physical picture is discussed here just for completeness, because the work described
in the following chapters did not deal with it.

Robinson instability comes from the fact that the revolution frequency of an
off-momentum beam is not simply given by ω0 but by ω0(1− ηδ), where δ = ∆E/E
is the relative energy error. Considering a beam executing synchrotron oscillation
above transition, due to an energy error of the beam, the longitudinal impedance
will sample the beam signal at a frequency slightly below hω0, h being the harmonic
number, if δ > 0 and slightly above hω0 if δ < 0. In order to damp this synchrotron
oscillation of the beam, it is needed to let the beam lose energy when δ > 0 and to
gain energy when δ > 0. This can be achieved with an impedance that decreases
with increasing frequency in the neighborhood of hω0, and from these considerations
follows the Robinson stability criterion for the instability growth rate [22]

τ−1 = Im{(Ω− ωs)} = Nr0η

2γT 2
0ωs

∞∑
p=−∞

(pω0 + ωs) Re
{
Z
‖
0

}
(pω0 + ωs), (2.67)

where, apart from the recurrent terms already specified in the above discussions, N
is the number of particles in the beam and r0 is the classical radius of the beam
particle type. Thus, it is the real part of the impedance that contributes to the
instability growth rate (the imaginary part contributing to the collective frequency
shift of the beam).

The Trasverse Coupled Bunch Instability (TCBI) is driven by narrow-band dipole
HOMs of RF cavities and also by the resistive wall impedance. For low frequencies,
the skin depth is relatively large and hence the wake field can last for a sufficiently
long time to couple the motion of different bunches. The transverse dipole resistive
wall impedance is found to be [22]

Z⊥1 = 2c
b2ω0

Z
‖
0

∣∣∣
RW
n

, (2.68)
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being b, as usual, the beam pipe radius. The transverse complex frequency shift for
coupled bunch mode l and dipole head-tail mode (rigid bunch shape) is given by

∆Ωl
‖ = −iω0I0β⊥

4πE/e Z
⊥l
eff , (2.69)

in which Z⊥leff is the transverse effective impedance given by eq. 2.62. In the case of
a single high-Q resonator tuned near the frequency pMω0, with zero chromaticity
and a bunch length which is short with respect to the resonant wavelength of the
resonator, the growth rate is given by

1
τ⊥,l

=
ω0I0R

⊥,l
eff

4π(E/e) , (2.70)

in which

R⊥,leff = −β⊥Re
{
{Z⊥1 [ω0(pM + l + νβ)]− Z⊥1 [ω0(pM − l − νβ)]}

}
. (2.71)
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Chapter 3

LHC Run I TCS-TCT
collimators

For LHC, the betatron tune shifts and instability growth rates can be estimated
by means of beam dynamics simulations and the machine impedance model. Beam
dynamics simulations are carried out with analytical models or the multi-bunch code
HEADTAIL. Up to 2012, the LHC impedance model accounted for RW impedance
from collimators, beam-screens, vacuum pipe and broad-band model from the
design report [35]. As a reference for the following impedance study, the various
contributions to the transverse vertical dipolar impedance is shown in Fig. 3.1, where
it is clearly seen that the collimators are among the main contributors, playing the
major role (∼ 90%) over a wide frequency range, both for real and imaginary parts.
[36].

In June 2012 single bunch tune shifts were measured, as an indirect measurement
of beam-based impedance. Measurements were performed with 8 bunches filling the
machine, some of them having different intensities. Being them equally spaced along
the LHC ring, the influence of neighboring bunches on tune shifts was considered
negligible, that is why such measured quantities are considered as single-bunch
tune shifts. Thus, tune shifts vs. intensity were measured, both at injection
(E = 450 GeV) and at flat top (E = 4 TeV) [37]. A specific measurement was also
performed for several collimator families (secondary collimators in IR7, TCSG, and
primary collimators always in IR7, TCP) all at top energy, giving their tune shifts
upon moving back and forth the jaws [38]. The experimental results for both the
measurements sessions are shown in Fig. 3.2 and Fig. 3.2, as the ratio of the measured
tune slope vs. intensity to the numerical simulations results from HEADTAIL, which
used the wake fields from the LHC impedance model. The abscissa labels B1 and
B2 stay for beam 1 and beam 2, respectively, and the H or V letters indicate the
horizontal or vertical planes. The measured tune shifts are higher than predicted
ones by a factor of ∼ 2 at top energy and of ∼ 3 at injection [39]; so the existing
LHC impedance model accounted only for a fraction, ∼ 1

3 −
1
2 , of the measured

transverse coherent tune shifts. This fact led to the need for an LHC impedance
model refining which, first of all, required a careful collimator geometric impedance
calculation. For instance, it was approximated only by that of a round circular
taper.
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Figure 3.1. Real (up) and imaginary (down) parts of the 2012 LHC vertical dipolar
impedance model.

For this purpose, numerical calculations of the geometric impedance of the LHC
secondary collimator TCS were carried out, as close as possible to its real design
and evaluated the collimator contribution to the overall LHC impedance budget.
CAD drawings including all the mechanical details were used as inputs for the high
performing, parallelizable, UNIX-platform FDTD GdfidL code1 [40]. A very fine

1For an overview of the general method used by the code to solve Maxwell equations, see
Appendix B.
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Figure 3.2

Figure 3.3

mesh, typically, of several billions mesh points, was required to reproduce the long
and complicated structures, described in huge Stereo Lithography interface format
(STL) files, and to overcome arising numerical problems. As an accuracy criterion,
indeed, it is recommended that for structures with long tapers (14.7 cm, in the case
of LHC RUN I TCS/TCT) the following relations hold [41]:

aφ

∆z ·
σz
∆z ≥ 100, (3.1)
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in which a is the pipe radius 2, φ the tapering angle, σz the bunch length and ∆z
the mesh size in the specified direction (here z for axially symmetric structures,
but it can be also any of the other two transverse directions, x or y, depending on
how much finely the discontinuities in that direction must be resolved). In the case
under study, given the very complicated structure and small discontinuities of the
collimator jaws, a mesh size of 0.2 mm in all three directions was used, leading to a
very huge computing task.

The only way to afford such a huge computational task was to use the GdfidL
dedicated cluster at CERN, EngPara, which allowed to study the wake fields and
impedances for of LHC collimators without using any model simplifications. In such
circumstances, GdfidL wake fields computations up to wake length of hundreds times
the typical devices lengths (∼ 1 m) took several days or two weeks at maximum (15
days is, however, the user runtime limit on EngPara).

3.1 Theoretical considerations
In order to verify whether the geometric collimator impedance can give a noticeable
contribution to the betatron tune shifts, the suggestion exploited in this thesis was
to compare transverse kick factors due to the resistive wall impedance and the
geometric one. First of all, as shown below, the tune shifts are directly proportional
to the kick factors. Besides, this approach has several advantages: 1) it is a quite
straightforward way to compare contributions from impedances having different
frequency behaviour into the transverse tune shifts; 2) only calculations of the broad
band wakes are necessary without the exact knowledge of the transverse impedance
ZT (ω); 3) both kick factors and broad-band impedances are easily calculated by
many numerical codes.

The well known expression for the coherent mode tune shifts can be found in
[31],

∆ωcm = j
1

1 + |m|
I2
c

2ω0Q(E/e)L

∑
p
ZT (ωp)hm (ωp − ωξ)∑

p
hmωp − ωξ

, (3.2)

where ∆ωcm is the shift of the angular frequency of themth transverse coherent mode,
with m being the azimuthal mode number, ω0 the angular revolution frequency, Ic is
the average bunch current, Q the betatron tune, E the machine energy, L is the full
bunch length and ωξ = ω0

ξ
η is the “chromatic” angular frequency, with ξ being the

chromaticity and η the slippage factor of a circular accelerator. For a given mode
m, the bunch power spectrum for a Gaussian bunch, with rms bunch length σz, is
given by:

hm(ω) =
(
ωσz
c

)2|m|
e−(ωσzc )2

. (3.3)

Given the sum in Eq. 3.2 being performed over the mode spectrum lines

ωp = (p+ ∆Q)ω0 +mωs ; −∞ < p < +∞ (3.4)
2For axially symmetric structures. For rectangular flat ones, like the TCS/TCT jaws, it can be

considered as the half gap between the beam axis and the jaw.
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where ∆Q is the fractional part of the betatron tune and ωs is the angular synchrotron
frequency, it results that the tune shifts are real if the imaginary transverse impedance,
Im{ZT (ωp)}, differs from zero. For ξ = 0 and dipole coherent mode (m = 0) we get
a proportionality relation:

∆ωc0 = −const · Ic
∑
p

Im{ZT (ωp)}e−(ωσzc )2
. (3.5)

On the other hand, from kick factor definition, we have

kT = 1
2π

∫ ∞
−∞

Im{ZT (ω)}e−(ωσzc )2
dω (3.6)

so that, comparing Eq. 3.6 with Eq. 3.5, we find

∆ωc0 ∝ −kT (3.7)

In what follows the impedance theory developed in [35] is used, in order to evaluate
the kick factors due to the wall resistivity.

3.1.1 Geometric and resistive wall kick factors evaluation

The geometric kick factors are easily returned by the code computations. For a
smooth taper, indeed, it can be shown [42] that:

kT =
∞∫

0

G

(
ω

c
σz

)
Re ZT (ω)dω − c

2π1/2σz
Im ZT (0), (3.8)

where, apart from the obvious meanings of ω, σz and c, G is a weighting function
introduced for convergence purposes. From the above equation, one can easily argue
that if Re ZT (ω)� Im ZT (ω), then kT ∝ ImZT (0) which is a very advantageous
relation because calculation of ImZT (0) is much easier to perform than ZT (ω),
involving only solutions of Maxwell equations for static fields.

In order to evaluate RW kicks [29], the thick wall impedance of a flat vacuum
chamber [43] can be considered, with 2a · 2b cross section:

ZTy
L

= (1 + j)Z0δ

2πb3 F1y

(
b

a

)
. (3.9)

So,
ZTy = L(1 + j)Z0δ

2πb3 F1y

(
b

a

)
= LZ0δ

2πb3 F1y

(
b

a

)
+ j

LZ0δ

2πb3 F1y

(
b

a

)
and

ImZT = ImZTy = LZ0δ

2πb3 F1y

(
b

a

)
. (3.10)

Substituting (3.10) into (3.6) and after some simple algebra, it is found:

kT = L

2π2b3
√

2cρZ0F1y

(
b

a

) ∞∫
0

1√
ω
e−

ω2σ2
z

c2 dω,
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where
∞∫
0

1√
ω
e−

ω2σ2
z

c2 dω is an Euler Γ function

Γ(z) =
∞∫

0

e−ttz−1dt,

with z = 0. So that: ∞∫
0

1√
ω
e−

ω2σ2
z

c2 dω = 2Γ
(5

4

) 1√
σz
c

and
kT = L

2π2b3
√

2cρZ0F1y

(
b

a
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2
√

c

σz
Γ
(5

4

)
(3.11)

For a flat rectangular vacuum chamber, the form factor

F1y

(
b

a

)
= π2

12

and, finally, the RW contributions:

kT = Lc

12b3

√
2Z0ρ

σz
Γ
(5

4

)
(3.12)

Just as remark, note that the same type of calculations hold for ZxT (ω) but taking
into account that F1x

(
b
a

)
= π2

24 , so leading to a weaker vertical kick.

3.2 Numerical calculations
The geometric wakefields and impedances simulations were performed by means of
GdfidL, assuming all metallic surfaces perfectly conducting.

As earlier mentioned, the need to simulate the collimator as close as possible to
its real design, led to the usage of the collimator CAD drawing, shown in Fig. 4.10(a)
(left), including all mechanical details as GdfidL input file. The picture in Fig. 4.10(a)
(right) shows the details of the collimator internal structure as reproduced by GdfidL.

The numerical studies have shown that the collimator broad-band impedance is
dominated by the impedance of the flat elliptical collimator tapers, the closest to the
beam. It is noteworthy to say that the difference in impedance between the round
and the flat rectancular tapers can be very large, being proportional to the ratio of
the horiziontal to the vertical size [44]. The real taper is elliptical in the case under
study (see, for example, Figure 2 in [45]), with high ratio of the horizontal to the
vertical size. That is why it is better modeled by the flat rectangular taper formula.

In Fig. 4.113 (left picture) a comparison between the low frequency transverse
impedance provided by GdfidL as a function of the collimator half gap and by the

3In both plots of Fig. 4.11 solid and dotted smoothed lines join the five computed points for the
five different half gaps.
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Figure 3.4. Collimator CAD design (left) and internal structure as reproduced by GdfidL
(right).

analytical impedance formulas is reported. For a round taper [46] the transverse
impedance is given by

ZT = j
Z0
2π

∫ (
b′

b

)2
dz, (3.13)

where Z0 = 377 Ω, b is the variable taper radius and b′ its derivative with respect to
z. For a flat rectangular taper [44] the transverse impedance is

ZT = j
Z0w

4

∫ (g′)2

g3 dz, (3.14)

where w is the taper constant width in the transverse vertical direction, g the taper
variable gap and g′ its derivative with respect to z. In both Eq. 3.13 and Eq. 3.14,
the integration is performed over the taper length. The width of the jaws where the
taper is carved is 74 mm to be compared with the typical collimator gap g of few
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millimeters in operating conditions. What it is obtained is a kind of a broad-band

Figure 3.5. GdfidL results for LHC collimator’s low frequency broad-band transverse
effective impedance (left) and kick factors’ comparison (right).

impedance, since at some point the wake was truncated and its Fourier transform
performed. This makes the “effective impedance” bunch length dependent. For the
nominal LHC bunch length of 7.5 cm, the whole bunch spectrum stays below the
beam pipe cutoff, so remaining inductive. That is why the analytical formula comes
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back to describe it finely.
Since the jaws’ taper represent the closest discontinuity to a beam, it can be

expected that the taper would give the dominant impedance contribution. Due to
the fact that the collimator taper has a very flat geometry, the available analytical
formula for a low frequency transverse impedance of a rectangular taper, Eq. 3.14,
should give a reasonable estimate of the impedance in this case. Indeed, as it
is seen on the left plot of Fig. 4.11 (upper curve), the calculated low frequency
impedance of the complicated collimators’ structures is very well approximated by
the rectangular taper formula Eq. 3.14. The analytical formula for a round taper
Eq. 3.13, instead, used in the early LHC impedance model, drastically underestimates
the taper impedance (lower curve on the left plot of Fig. 4.11).

On the right side of Fig. 4.11, finally, the comparison between the geometric kick
factors and the resistive wall ones, both for Carbon Fiber Composite (CFC) and
Tungsten (W) made collimators’ jaws, is reported, always as a function of the half
gap. As a result, for W collimators geometrical impedance contribution dominates
in almost the whole range of half gaps (from 1.5 mm onward), while only from about
8 mm onward for CFC collimators. Even considering the partial contribution in
the case of CFC, it is evident that the geometrical impedance is not negligible with
respect to resistive wall one.

Both the transverse and longitudinal impedances exhibit many resonant peaks at
different frequencies. These higher order modes (HOM) are created in the collimator
tank, trapped between the sliding contacts in the tapered transition etc., with
parameters depending very much on the collimator gap. As an example, Fig. 3.6
shows the longitudinal impedance for two different collimator gaps. We found out
that the HOM parameters obtained in our simulations, such as HOM frequency
patterns, their strength and dependence on the gap width are very similar to those
obtained in earlier works with simpler collimator model [47, 48, 49]. The modes
shunt impedances are relatively small compared to typical HOMs in RF cavities.
However, possible additional RF losses and related collimator structure heating due
to these modes, in the conditions of higher circulating currents in High Luminosity
LHC, still deserve a deeper investigation.

Finally, in order to allow beam dynamics studies by means of particle tracking
codes, detailed longitudinal and transverse dipolar and quadrupolar wake fields
calculations were carried out for 5 different collimator jaws’ half gaps, namely 1
mm, 3 mm, 5 mm, 11.5 mm and 20 mm. For this purpose the bunch length was
just 2 mm, instead of the 7.5 cm long LHC nominal bunch length, and the wake
field was traced over 1 m. These wake potentials can approximate “point-like” wake
functions for multi-particle tracking codes. In the following Fig. 3.7 and Fig. 3.9 the
longitudinal and dipolar transverse wake potentials, computed by GdfidL, for 1 mm
and 20 mmm collimator jaws’ half gaps is reported.

3.3 LHC impedance model update
The study described above contributed to the effort in updating the LHC impedance
model, a process that toke into account several improvements, namely the evaluation
of the geometric impedance of the collimators as explained above, a full revision of
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Figure 3.6. Real and imaginary parts of the longitudinal impedance for (left) 1 mm and
(right) 20 mm half gaps.

the resistive wall model of the beam screens and the warm vacuum pipe, a theoretical
re-evaluation of the impedance of the pumping holes, the inclusion of details of
the triplet region (tapers and BPMs) and the broad-band and High Order Modes
(HOMs) of the RF cavities, CMS, ALICE and LHCb experimental chambers [50].

Comparing the old and the updated models, a quite common impedance behaviour
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Figure 3.7. Longitudinal wake potentials for (left) 1 mm and (right) 20 mm half gaps,
calculated for 2 mm bunch length. The wake is traced over 1 m length, as reported in
the text, but here we focus the plots on the first 5 cm in order to highlight the main
differences in wake trends.

at low frequency and a consistent increase (∼ 30%) at frequencies close to 1 GHz
for the latter, can be assessed [51, 52]. This should explain a part of the factor 2
discussed at the beginning of the chapter.
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Figure 3.8. Dipolar transverse (down) wake potentials for (left) 1 mm and (right) 20 mm
half gaps, calculated for 2 mm bunch length. The wake is traced over 1 m length, as
reported in the text, but here we focus the plots on the first 5 cm in order to highlight
the main differences in wake trends.

Since the equation 3.2 for the coherent mode tune shifts uses the impedance con-
volution over the bunch spectrum (all frequencies starting from 0), the contribution
to the tune shift is expected to be smaller. The new DELPHI simulations performed
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according to the new data for collimators [50], indeed, show an increase of at most
∼ 15−20%, as an effect of geometric impedance. However the impedance near 1 GHz
may more strongly affect other beam dynamics aspects, e.g. TMCI threshold, since
the different modes in the spectrum probe different frequencies in a different manner.
The impact of the geometric impedance on the whole transverse dipolar impedance
LHC model is clearly visible in Fig. 3.9, where the various percentile contributions
are shown. A direct comparison between the previous and the updated impedance

Figure 3.9. The updated LHC dipolar vertical impedance model real (left) and imaginary
(right) parts.



3.3 LHC impedance model update 55

models is reported in the plot of Fig. 5.7, for the vertical dipolar impedance. No
differences are shown in the low frequency impedance up to ∼ 100 MHz, whereas a
visible increase occurs at high frequencies, up to ∼ 20 GHz.

Figure 3.10
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Chapter 4

Simulation tests of resistive and
dispersive properties of
materials in GdfidL

In view of LHC Run II and future high luminosity LHC upgrades, 2 old CFC TCS
and 16 W TCT collimators were replaced, during the LSI, by new devices embedding
BPMs in the jaws’ tapering region and TT2-111R ferrite blocks in place of old
transverse RF fingers (Fig. 5.7) [53]. This new collimator’s design will be illustrated
in detail in the next chapter, together with its impedance study. What is important
to say here, is that in order to characterize the collimator in terms of impedance, to
accurately predict its HOMs pattern and the effect of different materials in HOMs
damping, a full reliability on the electromagnetic code computations of wake fields
and impedances in presence of resistive and dispersive materials, must be assessed.

Several dedicated tests have been performed to verify correct simulations of lossy
dispersive material properties, such as resistive wall and ferrites, benchmarking code
results with analytical, semi-analytical and other numerical codes outcomes.

4.1 RW simulation tests
Only recently1 a possibility to carry out simulations with resistive walls (RW),
implementing the Impedance Boundary Conditions (IBCs), was made available in
GdfidL. So it has been decided to perform numerical tests comparing the simulation
results with known analytical formulas.

4.1.1 Resistive cylindrical pipe

As a first benchmark, the longitudinal wake of a very simple geometry, a cylindrical
pipe with two different boundary material electrical conductivities, 5.8824 · 107 S/m
for Cu and 1.7857 · 107 S/m for W, was simulated. Results were compared to well
established theory for longitudinal RW of uniform cylindrical pipes [22], in which

1The GdfidL version implementing IBC was first released on June 22nd, 2014.
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the impedance function is written as:

Z(k) = −L Z0
2πb

[
ν

k0
+ j

k0b

2

]−1
, (4.1)

where ν =
√
−jωµσc, k0 = ω

c , b = R, R being the pipe radius. In the case under
study a geometry with L = 50 cm, R = 2.8 cm, with a mesh size of 0.5 mm and
bunch length σz = 3 cm was choosen, as illustrated in Fig. 4.1. Those values for
pipe and bunch lengths were set in order to avoid computation above the pipe cutoff
frequency, for the fundamental TM01 mode, which in this case is ≈ 4.1 GHz.

Figure 4.1. The simulated pipe geometry.

Figure 4.2. Longitudinal wake field for copper (black line) and tungsten (red line) pipe, as
simulated with GdfidL.

In Fig. 4.2 the computed longitudinal wake field is plotted, for Cu and W. The
lower electrical conductivity of W gives rise to a stronger RW wake field, with respect



4.1 RW simulation tests 58

(a)

(b)

Figure 4.3. Comparison between analytical and GdfidL-simulated RW longitudinal
impedance, for (a) copper and (b) tungsten pipes.
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to that of Cu, as physically expected. This is obviously reflected in the longitudinal
RW impedance also, as shown in Fig. 4.3(a) and Fig. 4.3(b), where the real and
imaginary parts of the impedance are shown in black and red colours, respectively,
and the numerical results in solid lines are compared to theoretical calculations
based on eq. 4.1, in dotted lines.

In Table 4.1 a comparison between simulated and theoretical longitudinal
impedance and loss factor values is reported. As a result of this benchmark it

Cu Re Z‖(1 GHz) W Re Z‖(1 GHz) Cu |k‖| W |k‖|
GdfidL 0.029 Ω 0.054 Ω 72.4 · 106 V/C 131.5 · 106

Theory 0.024 Ω 0.043 Ω 57.2 · 106 V/C 103.9 · 106

Table 4.1

can be concluded that, bringing together the plots of Fig. 4.3(a), Fig. 4.3(b) and the
values in Table 4.1, an acceptable agreement between simulations’ outcomes and
analytical calculations has been achieved within about 20%, which is the discrepancy
found between the numerical and theoretical impedance and loss factor values.

4.1.2 Beam pipe with thick resistive insert

The longitudinal and the transverse loss factors of a Gaussian bunch passing inside
a round beam pipe, having an azimuthally symmetric thick resistive insert, was
calculated. The insert was enough long in order to be able to neglect the contribution
of the insert ends, as shown in Fig. 4.4.

Figure 4.4. GdfidL model for the azimuthally symmetric beam pipe with resistive insert.
The choosen length was L = 30 cm, the insert thickness a = 5 mm, the pipe radius plus
the insert thickness b = 10 mm, and the electrical conductivity σc=7.69 · 105 S/m for
Carbon Fiber Composite (CFC).

In this case the loss factors can be found analytically [54, 55, 56]:

k‖ = cL

4πbσ3/2

√
Z0ρ

2 Γ
(3

4

)
, (4.2)

for the longitudinal one and

k⊥ = cL

π2b3

√
2Z0ρ

σz
Γ
(5

4

)
(4.3)

for the transverse one, where c = 2.997925× 108 m/s is the speed of light, L is the
length of the pipe, ρ = σc is the electrical resistivity, σz the bunch length and Γ
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Figure 4.5. Loss and kick factors benchmark between GdfidL and analytical formulas
Eq. (4.2) and Eq. (4.3).

the Euler gamma function. Figure 4.5 shows a comparison between the analytical
formulas and the numerical data. As it is seen the agreement is quite satisfactory.

However, the loss factors are somewhat “averaged” values characterizing the
beam impedance. In order to check the impedance frequency behavior the RW
impedance of the insert has been calculated using the semi-analytical mode-matching
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method (MMM) [57]. In turn, numerically the impedance till rather low frequencies
has been obtained by performing a Fourier transform of a long wake behind a long
bunch obtained by Gdfidl, and also by CST PS[58] for comparison. As it is seen in
Fig. 4.6 also the impedance frequency behavior is reproduced well by GdfidL.

Figure 4.6. Outcomes of the benchmark between GdfidL, CST and MMM on dipolar
transverse impedance.

4.2 Ferrite Material Simulation Test
In order to damp parasitic higher order modes (HOMs) in the new collimators
with embedded BPM pickup buttons, special blocks made of the TT2-111R lossy
ferrite material are used. For this reason a comprehensive numerical study has
been carried out, aimed at testing the ability of GdfidL to reproduce frequency
dependent properties of the lossy ferrite in calculations of wake fields, impedances
and scattering matrix parameters [59].

For this purpose, it was a) simulated a typical coaxial-probe measurement of the
ferrite scattering parameter S11; b) compared the computation results of CST MW,
GdfidL and MMM by calculating impedances of an azimuthally symmetric pill-box
cavity filled with the TT2-111R ferrite in the toroidal region; c) benchmarked GdfidL
simulations against analytical Tsutsui model for a rectangular kicker with ferrite
insert [60, 61] and CST simulations for the same device.

All the comparative studies have confirmed a good agreement between the results
obtained by GdfidL and the results provided by other numerical codes, by available
analytical formulas and by the mode matching semi-analytical approach.
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It must be pointed out that the dispersive properties of user-defined materials,
namely the frequency-dependent permittivity εr(ω) = ε′ + iε′′ and permeability
µr(ω) = µ′ + iµ′′ [62], are specified by means of N th order Lorentz functions, with
resonant frequencies ωn and damping frequencies γn, as follows:

εr(ω) = ε∞ + ε2∞

N∑
n=1

Anω
2
n

ω2
n − iωγn − ω2 (4.4)

µr(ω) = µ∞ + µ2
∞

N∑
n=1

Anω
2
n

ω2
n − iωγn − ω2 , (4.5)

where An is the amplitude of the nth resonance. So, in order to correctly simulate
the behaviour in impedance of devices with dispersive materials with GdfidL, one has
first to input an appropriate Lorentz function describing the available experimental
data. It means that these latter have to be fitted with the Lorentz model with
parameters An, ωn, γn and ε∞ or µ∞. Thus (3N + 1) parameters must be set in
the input file.

Figure 4.7. Experimental data for magnetic permeability of TT2-111R ferrite (Courtesy
of B. Salvant, CERN).

The fitting procedure has been performed in Sage Mathematics Software (Version
6.8)[63], minimizing the χ2 of the real and imaginary parts of first, second and third
order permeability Lorentz functions, with the available experimental data for the
real and imaginary parts of TT2-111R ferrite permeability, shown in Fig. 4.7. It
resulted that the best fit was provided by a third order Lorentz function, as shown
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Figure 4.8. Fitting curves obtained from Sage Mathematics Software for the real and
imaginary parts of the permeability experimental data of the TT2-111R ferrite, shown
in solid circles. The solid lines are the result of the fit with a first order Lorentz function,
wherease the dotted ones represent the fit with a third order Lorentz function. For the
data and all the curves, the black and red colours indicate the real and imaginary parts,
respectively.

in Fig.4.8, with the following parameter values:

µ∞ = 1.06286; ω1 = 2π1.1575 · 109; A1 =162.94; γ1 =6.7946 · 1011

ω2 = 2π2.6911 · 109; A2 =46.960; γ2 =1.7398 · 1011

ω3 = 2π1.1154 · 105; A3 =33.237; γ3 =6.1474 · 109

4.2.1 Scattering parameter S11 of a coaxial probe

In order to test correct permeability implementation into GdfidL, a simple coaxial
probe measurement simulation was arranged, according to a typical experimental
setup as shown in Fig. 4.9 and documented elsewhere [64], checking for the numerically
computed S-parameters [65] to be fully in agreement with theoretical prediction.
Figure 4.10(a) shows a simplified sketch of a set-up for the ferrite material properties
measurements: just a coaxial line filled with a ferrite material under test, while
Fig. 4.10(b) its geometry reproduced by GdfidL. For such a simple structure the
reflection coefficient S11 is easily measured and can be found analytically as [65]

S11 = ∆ · tanh(γL)− 1
∆ · tanh(γL) + 1 , (4.6)

with γ = jω
√
εµ and ∆ =

√
µr
εr
. Figure 4.11 shows the S11 coefficient calculated for

the TT2-111R material in a very wide frequency range, from 106 to 1012 Hz. As it
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(a)

(b) (c)

Figure 4.9. (a) measurement layout [64]. (b) and (c) ferrite plate and its adaptor to a
coaxial probe.

(a) (b)

Figure 4.10. Coaxial probe measurement sketch (a) and model (b) for GdfidL S11 simula-
tions.

is seen, despite the complicated S11 frequency dependence the agreement between
GdfidL, HFSS frequency domain code and the analytical formula is remarkable.
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Figure 4.11. Reflection coefficient S11 results for the arranged simulation setup. The solid
line is the analytical trend from Eq. (4.6).

4.2.2 Impedance of a ferrite filled pillbox

The impedance of a simple pillbox geometry, filled with the TT2-111R ferrite in its
toroidal region, was calculated with GdfidL, CST PS and MMM codes, according
to the model shown in Fig. 4.12. The benchmark concerned the longitudinal and

(a) (b)

Figure 4.12. Geometry of the pillbox filled with TT2-111R in its toroidal region (a), as
simulated by CST, GdfidL and MMM, and details of its dimensions (b).

transverse dipolar impedance. The results in Fig. 4.13 and Fig. 4.14 demonstrate that
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the impedances computed by the three codes are in a very good agreement. There
are, however, some tiny differences. While for the longitudinal impedance GdfidL
results differ of about 10% from the MMM and CST results, in the frequency range
500 MHz / f / 1 GHz, it is the MMM that computes a slightly different transverse
dipolar impedance, with respect to CST and GdfidL, for f ' 100 MHz, always of
few percents. In the field of impedance numerical computations such differences may
be meaningless, being ascribable to different computation algorithms, differences
in the mesh sizes and mesh geometries (rectangular, hexaedral etc.) and, most
importantly, the way in which the dispersive properties of materials are implemented
in the different codes.

4.2.3 Tsutsui model for TT2-111R ferrite kicker

An extensive benchmark simulations’ campaign rooted about a simplified model of
ferrite kicker magnet, whose longitudinal and transverse impedances were analytically
calculated by Tsutsui [60, 61]. The model is illustrated in Fig. 4.15(a) and is such
that the ferrite is at −a < x < a, b < |y| < d. There is vacuum between two ferrite
rectangular blocks (−a < x < a, −b < y < b) and the outside (|x| > a or |y| > d) is
filled with PEC material. The beam passes at x = y = 0 in the positive z direction,
out of the page. It is found that for such a structure the following equations hold,

Z‖
L

= j
Z0
2a

∞∑
n=0

1[
kxn
k (1 + εrµr)shch + kyn

k (µrsh2tn− εrch2ct)
]
/(εrµr − 1)− k

kxn
shch

,

(4.7)

ZX⊥
L

= j
Z0
2a

∞∑
n=0

k2
xn

k

[
kxn
k (1 + εrµr)shch + kyn

k (µrsh2tn− εrch2ct)
(εrµr − 1) − k

kxn
shch

]−1

,

(4.8)

ZY⊥
L

= j
Z0
2a

∞∑
n=0

k2
xn

k

[
kxn
k (1 + εrµr)shch + kyn

k (µrch2tn− εrsh2ct)
(εrµr − 1) − k

kxn
shch

]−1

,

(4.9)

where Z0 is, as usual, the impedance of free space, L the device length, k = ω/c the
wave number, kxn = 2(n + 1)π/(2a), n = 0, 1, 2, ... are the expansion coeffincients
of the electromagnetic field in the vacuum region (as the sum of the source field
and the waveguide modes), and kyn =

√
(εrµr − 1)k2 − k2

xn. In all the equations
above, the parameters sh = sinh(kxnb), ch = cosh(kxnb), tn = tan(kyn(b − d)),
ct = cot(kyn(b− d)), εr = ε

′
r − jε

′′
r + σ

jωε0
and µr = µ

′
r − jµ

′′
r were defined.

The kicker model geometries set into CST PS and GdfidL are shown in Fig. 4.15(b)
and Fig. 4.15(c), respectively. The simulations’ results for longitudinal, transverse
dipolar and transverse quadrupolar impedances, compared with the analytical models,
are shown in Fig. 4.16, Fig. 4.17 and Fig. 4.18 respectively, separated in their real
and imaginary parts.

For the longitudinal case, the impedance calculated by GdfidL is closer to the
analytical curve than that of CST at least for lower frequencies and up to ≈ 6 GHz. In
this range GdfidL and analytical curves differ of ≈ 9%, whereas CST and analytical
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curves of ≈ 15%, both for real and imaginary parts. At frequencies ' 6GHz,
however, CST and analytical results seem to converge to the same values, while
GdfidL ones start to diverge significantly (nearly 60%). However the low frequency

250

f [Hz]

(a)

150

f [Hz]

(b)

Figure 4.13. Real (a) and imaginary (b) parts of the transverse impedance for the pillbox
cavity, as computed by MMM, GdfidL and CST.
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Figure 4.14. Real (a) and imaginary (b) parts of the longitudinal impedance for the pillbox
cavity, as computed by MMM, GdfidL and CST.

peak at around 1 GHz is computed at the same frequency both by CST and GdfidL.
For the transverse dipolar impedance, the only significant feature of the two EM

codes’ computations seems to be a broader and splitted peak at f ≈ 2 GHz in the real
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part, with respect to the analytical prediction. Both the real and imaginary parts
of the simulated impedance agree within ≈ 10% with the theory up to f ≈ 6 GHz,
while converging to the same values at higher frequencies. Finally, the transverse
quadrupolar impedance simulated by GdfidL shows a similar behaviour with respect
to theoretical and CST curves. This is particularly true for the imaginary part
(apart from a divergence for very low frequencies below 100 MHz), whereas for the
real part a broader curve with values differing from the theory of about 15%, is
computed by GdfidL, still converging to the same values at higher frequencies. As a
conclusion for this particular batch of simulations, it can be said that a reasonable
agreement was found between GdfidL impedance computations for the ferrite loaded
kicker structure, the Tsutsui analytical model and CST PS simulations.

(a)

(b) (c)

Figure 4.15. (a) ferrite kicker model as sketched in the original paper by Tsutsui [60], (b)
and (c) the same model as reproduced in CST and GdfidL, respectively.
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Figure 4.16. Real (up) and imaginary (down) parts of the longitudinal impedance as
calculated from the Tsutsui analytical model and from simulations with GdfidL and
CST PS.
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Figure 4.17. Real (up) and imaginary (down) parts of the transverse dipolar impedance
as calculated from the Tsutsui analytical model and from simulations with GdfidL and
CST PS.
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Figure 4.18. Real (up) and imaginary (down) parts of the transverse quadrupolar
impedance as calculated from the Tsutsui analytical model and from simulations with
GdfidL and CST PS.
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Chapter 5

LHC Run II TCS/TCT
collimators

As already mentioned in the previous chapter, 2 old CFC TCS and 16 W TCT
collimators were replaced in the LHC, by new devices embedding BPMs in the
jaws’ tapering regions. The proposal and installation of these new collimators’
structures was motivated by the fact that for optimal performances the collimators’
jaws must be centered around the local orbit. The beam-based alignment, however,
is performed by touching the beam halo with both jaws of each collimator. This
method requires dedicated fills at low intensities that are done infrequently and
makes the procedure very time consuming and does limit the operational flexibility
[53]. In order to overcome these limitations, two BPM pickups are installed at the
extremities of each jaw, to provide a measurement of the beam orbit at the upstream
and downstream sides of the collimators, as shown in Fig. 5.1(a). The BPM pickups
are hosted in an additional “ad-hoc” rectangular flat taper (the closest to the beam),
adjacent to the round elliptical one (the farther away from the beam). At the
request of the collimation project team and following the issues with RF contacts
that occurred in 2011 for the LHC Run I collimators, the CERN impedance team
has recommended to leave the gap between the jaws and the upper and lower plates
open, without the RF contacts, and to install special ferrite (TT2-111R) blocks to
suppress parasitic HOMs, as indicated in Fig. 5.1(b). In the spirit of the approach
discussed in section 3.1, again calculations of the geometric broad band wakes of
the old and new collimators were performed. At a first attempt, the aim was to
gain a preliminary estimate of the new design contribution to impedance. Values

w/ BPM cavity w/o BPM cavity
Half gaps (mm) kT ( V

Cm) kT ( V
Cm)

1 3.921 · 1014 3.340 · 1014

3 6.271 · 1013 5.322 · 1013

5 2.457 · 1013 2.124 · 1013

Table 5.1. Geometric transverse kick factors due to the LHC Run I and Run II TCS/TCT
geometries, calculated at different half gap values.

listed in Table 5.1, calculated for three different jaws’ half gaps, clearly show that
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(a) (b)

Figure 5.1. Detailed view of (a) BPM pickup position in the tapering region and (b) ferrite
blocks positioning, in the gap between the jaws and the metallic plates.

the geometric transverse effective impedance of the new collimators was expected to
increase of about 20% with respect to the old design, mainly due to the first tapers
with a steeper angle.

5.1 New TCS/TCT’s taper design optimization study
One of the possible way to reduce the impedance of collimators is to reduce the
tapering angle. The LHC Run II secondary collimators’ design consists of two tapers
at different angles, separated by a longitudinal gap, and at different distance from
the beam axis. The one closest to the beam contributes the most to the overall
impedance. As already shown in Chapter 3, the best analytical approximation to
the tapers’ geometry is the Stupakov formula for flat taper [42, 66]. Thus writing
down the impedance of the two tapers as a function of the first one’s (the closest to
the beam) angle and length, it is possible to find local minima and the best set of
tapers’ angles and lengths.

The total transverse impedance for two flat tapers, separated by a longitudinal
gap g, as a function of first taper’s length L1 and angle α1, can be written as

Z⊥ = Z0h1
8

(
1
a2 −

1
(L1 tan (α1) + a)2

)
tan (α1) +

+
(d− L1 tan (α1)− a)Z0h2

(
1

(L1 tan(α1)+a)2 − 1
d2

)
8 (L− L1 − g) , (5.1)

in which the fixed parameters are the collimator’s half gap a, final height from
the beam axis d, the gap g and total tapers’ length L = L1 + L2 + g. The
geometrical sketch of the problem is given in Fig. 5.2 For the case under study, the
above parameters were allowed to assume the values 0° ≤ α1 ≤ 45°, 18.7 mm ≤
L1 ≤ 97.4 mm, a = 1, 5, 20 mm, d − a = 18.7 mm and L = 147 mm, due to
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Figure 5.2. Geometrical sketch of the problem of impedance minimization by tapering
angle optimization.
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engineering constraints. The impedance surface in the three dimensional space
L1 [ m], α1 [ rad], Z⊥ [Ω/m] , for the three different half gaps a, is shown in Fig. 5.3.
As expected, the half gap broadens the surface as it grows to higher values. Just as
an example, in Fig. 5.4 the Z⊥ surface cross sections, for a = 5 mm, are reported in
the two planes L1 [ m], Z⊥ [Ω/m] and α1 [ rad], Z⊥ [Ω/m]. As a result, the best
set of values of lengths and angles for Z⊥ local minima was found for a = 1 mm
and a = 5 mm, as reported in Table 5.2 The LHC Run II TCS/TCT collimators

Z⊥min [ kΩ/m] L1 [ mm] α1 [°] L2 [ mm] α2 [°]
a = 1 mm 105.382 70 2.29 46.12 19.02
a = 5 mm 7.848 64.4 4.7 51.7 14.5
Table 5.2. Best set of taper’s lengths and angles for Z⊥ local minima.

have design values of α1 = 17.74°, L1 = 25.78 mm, α2 = 16ř, L2 = 37.32 mm, with
respect to which a substantial estimated gain in geometric transverse impedance was
found, as reported in Table 5.3, where Z⊥old [ kΩ/m] = 26.24. However, due to the

Z⊥old/Z⊥min
a = 1mm 5.2
a = 5mm 2.64

Table 5.3. Estimated geometric impedance gain of the new tapers’ lengths and angles set,
with respect to the collimator’s design values.

same engineering constraints mentioned before, it was possible to prototype the new
collimators with the lengths and angles sketched in Fig. 5.5. With that parameters
set of values, the transverse geometric impedance was found to be Z⊥[ kΩ/m] = 11.74,
which in any case represents a favorable improvement.

5.1.1 Resistive wall impedance contribution from the new angle
set

The new (small) angles’ set collimator can, in principle, be affected by a stronger
RW contribution to the impedance, expecially for small half gaps values. In order to
estimate this contribution, again a kick factors comparison for the two geometries
(design values vs. prototype values in Fig. 5.5) was carried out, performing simula-
tions for two flat tapers, using the new GdfidL version with implemented IBCs, as
shown in Fig. 5.6. Taking σc = 1.4 · 105 S/m as the electrical conductivity for the
CFC jaws, a wake length of s = 75 cm was traced for a bunch length σb = 7.5 cm,
whose results in terms of kick factors are listed in Table 5.4 for a = 1 mm and in
Table 5.5 for a = 5 5mm, where “old” and “new” stay for design and prototype kick
factors, respectively.

As it is evident from Table 5.6, also in the case of RW impedance, the new
collimator’s tapering region structure results to be favorable with respect to the
old one, giving an estimated reduction of a factor ≈ 3 in impedance and an almost
similar kick for 1 mm of half gap, and of a factor ≈ 2.6 in impedance and ≈ 2.1 in
the kick for 5 mm of half gap.
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(a) a = 1 mm

(b) a = 5 mm

(c) a = 20 mm

Figure 5.3. Transverse impedance surface, from eq. 5.1, as a function of L1 [ m] and
α1 [ rad], for fixed a values.
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(a) View in the L1 [ m], Z⊥ [Ω/m] plane

(b) View in the α1 [ rad], Z⊥ [Ω/m] plane

Figure 5.4. Transverse impedance cross sections for a = 5 mm.

1 mm half gap PEC CFC
kold⊥ [ V/Cm] 9.31 · 1014 1.29 · 1015

knew⊥ [ V/Cm] 7.20 · 1014 1.15 · 1015

Table 5.4. Kick factors results from GdfidL simulations of the double flat taper structure,
for PEC and CFC materials, “old” and “new” angle set and 1 mm of half gap.

5 mm half gap PEC CFC
kold⊥ [ V/Cm] 4.47 · 1013 4.87 · 1013

knew⊥ [ V/Cm] 2.17 · 1013 2.85 · 1013

Table 5.5. Kick factors results from GdfidL simulations of the double flat taper structure,
for PEC and CFC materials, “old” and “new” angle set and 5 mm of half gap.

5.2 TCS/TCT impedance study
In order to study the impedance behaviour of the new collimators and the effect of the
ferrite blocks on HOMs, we performed detailed GdfidL wake fields simulations of the
whole real structures. From the computational point of view, apart the introduction
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Figure 5.5. Mechanical drawing of the TCS/TCT prototype tapering region (courtesy of
Luca Gentini, CERN).

Figure 5.6. The geometric model of the double flat taper as simulated into GdfidL.

of resistive and dispersive materials discussed so far, the most significant difference
with the simulations of the LHC Run I collimators’ structures was that no more
symmetry planes were applicable, because of the asymmetric positioning of the
ferrite blocks in the gaps between the jaws and the upper or lower plates (Fig. 5.1(a),
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half gap [mm] Zold⊥ /Znew⊥ |kold⊥ |/|knew⊥ |
1 ≈ 3 ≈ 1.3
5 ≈ 2.6 ≈ 2.1

Table 5.6. Estimated gain in RW transverse impedance and kick factor for the new
collimator’s tapering region, with respect to the old one.

Fig. 5.1(b) and Fig. 5.7). This fact implied the need to simulate the whole structure,
thus in more simulation time needed.

(a)

(b)

Figure 5.7. (a) the new BPM embedded TCS/TCT collimator CAD drawing for LHC
Run II and (b) its elaboration into GdfidL.

The finite conductivity of W and the frequency-dependent permeability of TT2-
111R were inserted into GdfidL input file. As a first result, an overall HOMs damping
feature was demonstrated for the structure with resistive W jaws plus ferrite blocks
at all frequencies [67]. This is clearly visible from the plot in Fig. 5.8 for the
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longitudinal impedance. There, the red curve represents the collimator simulated
as a whole with PEC material, without any resistive and dispersive material, while
the black one represents the real collimator with W jaws and ferrite blocks. The

Figure 5.8. Longitudinal impedance for the new collimator as computed by GdfidL, with
(red curve) and without (black curve) ferrite and resistive W.

results of Fig. 5.8 show that the longitudinal higher order modes till 1.2 GHz are
heavily damped by the TT2-111R ferrite blocks and by the resistive contribution of
the jaws. This is very important for the heating reduction of the collimators in the
multibunch regime (for the nominal LHC bunches 7.5 cm long).

In order to discriminate the longitudinal or transverse nature of the measured
HOMs that will be discussed below, the longitudinal impedance was computed by
means of two GdfidL simulations, one with a zero beam transverse offset and the
other with a non zero beam transverse offset. The results shown in the plot of
Fig. 5.9 clearly demonstrate that the low frequency modes grow with the offset, thus
clearly corresponding to transverse modes.

5.2.1 S1x parameters simulations vs loop measurements

Before facing on the task of collimators detailed charachterization in impedance, a
wire impedance measurement simulation was performed with GdfidL. In addition to
the collimator structure, a metallic (PEC) wire 0.25 mm in radius was modeled at the
center axis of the collimator, between the jaws, performing a scattering parameters
(reflection and transmission coefficients S11 and S12) computation analogous to that
of Chapter 4, for the simple coaxial probe. The computation involved collimator
jaws at 3 mm of half gap, 1 mm mesh size and 4358 Million cells, ferrite blocks,
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Figure 5.9. Longitudinal impedance for the new collimator, from longitudinal (zero beam
offset) simulation and from transverse dipolar (non zero beam offset) simulation.

W IBC on all metallic surfaces and took 30 days on a 190 GB RAM, 32 cores, 4
Socket Opteron 6370P Server (courtesy of W. Bruns). The results are shown in
Fig. 5.10(a), Fig. 5.10(b) and Table 5.7. While not resolved in the S12 spectrum

GdfidL computed modes
i f [ MHz]
1 87.0
2 173.0
3 258.0

Table 5.7. Computed frequencies of the first three HOMs.

alone ( Fig. 5.10(a)), the HOMs are clearly distinguished in the power sum spectrum
(Fig. 5.10(b)), the first three laying at the frequencies listed in Table 5.7. Compar-
ing these latter with the frequencies of the HOMs measured at CERN with loop
technique [68], it came out already at this stage a very good agreement between
the numerical calculations of the HOMs frequency spectrum and the measurements,
assessing GdfidL simulations as a very reliable tool for further detailed impedance
investigations.

5.2.2 Z⊥ simulations versus wire measurements

The transverse dipolar wakes and impedances of the LHC Run II TCS/TCT collima-
tors’ real structures were finally calculated by means of GdfidL simulations, for 3 mm
and 8 mm of jaws’ half gaps. Bearing in mind the aim at estimating the damping
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(a)

(b)

Figure 5.10. (a) transmission coefficient and (b) power sum of reflection and transmission
coefficients computed by means of the wire measurement GdfidL simulation.
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Figure 5.11. HOMs spectrum of the Run II collimator, measured with the loop technique
(courtesy of N. Biancacci, CERN).

features of the ferrite blocks on HOMs, both structures with and without dispersive
and properties of TT2-111R, but together with resistive W jaws, were considered.
The results of such an extensive simulation campaign are shown in Fig. 5.12 and
Fig. 5.13.

The wake field was traced up to s = 200 m. It came out that in the case of 3 mm
half gap collimator, the wake with only W exhibited a worst decay over the traced
wake length, with respect to the same computation for the case of 8 mm half gap
(Fig. 5.12(a) and Fig. 5.13(a), respectively). In any case, a better wake decay was
assured by the ferrite blocks for both geometries, as theoretically expected.

The TT2-111R ferrite resulted to be very effective in damping the transverse
parasitic modes also, for frequencies above 500 MHz. The modes at lower frequencies
are less damped, residual transverse HOMs at frequencies around 100 MHz and 200
MHz, with non-negligible shunt impedances still existing. This is clearly visible in
the plots of Fig. 5.12(b) and Fig. 5.13(b). The confidence in GdfidL HOMs spectrum
computation reliability, first dealt with in the previous section, was complied in this
case also, with the calculated frequencies of the modes being in reasonable agreement
with the loop measurements. The results are reported in Table 5.8. The effect

half-gap [mm] HOMs
w/ TT2-111R w/o TT2-111R

f [MHz] Rs [MΩ/m] f [MHz] Rs [MΩ/m]

3 82.6 2.913 93.4 4.370
167.2 0.485 181.1 0.797

8 84.7 0.239 95.7 0.340
169 0.029 193.9 0.170

Table 5.8

of ferrite results also in the shift of HOMs characteristic frequencies toward lower
ones. As an example, for 8 mm half gap, the first HOM frequency shifts from ≈ 95
MHz to ≈ 84.5 MHz, at exactly the same frequency measured experimentally at
CERN with loop technique [68]. It is clear that the computed impedance spectrum
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s [m]

(a)

f [Hz]
3.5e+09

(b)

Figure 5.12. Transverse dipolar (a) wake and (b) real part of impedance spectrum of LHC
Run II TCS/TCT collimators, with 3 mm of jaws’ half gap. The impedance plot inset
layer focuses on low frequency HOMs.
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(b)

Figure 5.13. Transverse dipolar (a) wake and (b) real part of impedance spectrum of LHC
Run II TCS/TCT collimators, with 8 mm of jaws’ half gap. The impedance plot inset
layer focuses on low frequency HOMs.
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Figure 5.14. 1st HOM RS as a function of jaws’ half gap, as measured with wire technique
and simulated in CST PS and GdfidL.

resolved very well the low frequency HOMs, whose characteristic frequencies are
in excellent agreement with those found experimentally. Moreover, under these
simulation circumstances, the computed shunt resistances of the first HOM at ≈ 84
MHz, for the two considered jaws’ half gaps, is in remarkably agreement, within a
factor of 2, with those measured experimentally with the wire technique at CERN
[69]. This can be easily stated from Fig. 5.14, where the results from first HOM
measurements, from CST PS and GdfidL simulations are plotted as a function of
the jaws’ half gap. For instance, in the case of 8 mm half gap Rsims ≈ 237 kΩ/m
and Rmeass ≈ 152 kΩ/m [70]. It is noteworthy to say that these small discrepancies
may depend on several collimator design constraints, namely the gap between the
plate where ferrite blocks are installed (HOMs’ frequencies can shifts of the order
of tens percents), the gap between collimator jaws and external tank (which can
affect the HOMs’ Rs) and also on the mesh and computed wake length. There are
good margins to be confident, however, that the results coming out from the GdfidL
simulations presented so far could be more accurate, i.e. closer to the physical
reality, with respect to both measurements and CST simulations. This because it
is well known that wire measurements perturb the field pattern inside a cavity like
structure, leading to a broadening of the modes, in frequency, and to a lowering in
Rs. The CST simulations, moreover, were performed with simplified models of the
collimators, whereas the GdfidL ones with real models coming from CAD drawings,
including all the structures’ details, as it was already stressed several times in this
thesis.
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Chapter 6

LHC TDI collimators

The LHC injection protection system consists of a number of absorbers, aimed at
intercepting the beam in case of failures of the LHC injection kicker magnets (MKI)
[71]. It is going to be upgraded to prepare the higher intensity proton beam for
the HL-LHC, process foreseen to be finished in the LHC LS II (2018-2019). In the
case of MKI failures, the injection absorbers (TDIS) must be able to withstand
the impact of a full injection train consisting of 288 bunches. Several materials for
the absorber blocks are presently being considered, including different grades of
boron nitride, graphite and carbon-reinforced-carbon, all having a low density, a low
coefficient of thermal expansion, a high strength and a low Young’s modulus [72].
Up to now, graphite R4550 seems to be a good compromise in terms of availability
of shapes, machinability, costs and performances.

The preliminary TDIS design, shown in Fig. 6.1, is composed of three modules of
equal length, containing different absorber materials, the first two of low Z absorber
blocks (graphite R4550) and the third one of higher Z materials. The transverse

Figure 6.1. Preliminary design of one TDIS module [72].

dimensions of the absorber blocks are reported in Table 6.1, specifying the length
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of a single module with and without tapering. The taper dimensions on either
side depend on impedance calculations. The two TDI presently installed in LHC,

Parameter Value
Block height 54 mm
Block width 58 mm
Active absorber length 1500 mm
Tapering length 100 mm
Tapering angle 10°
Total absorber length 1700 mm

Table 6.1. Dimensions of TDIS absorbers.

indeed, contribute significantly to both longitudinal and transverse impedances. It
was indeed experimentally observed, by means of dedicated measurements during
Run I [73, 74], beam induced heating causing high vacuum pressures that affected
the background of the experiments. Thus a special care in the TDI design stage
is needed, to minimize their impedances in view of the higher intensities planned
for the LHC Run III and HL-LHC. This requires an impedance optimization study
aimed at reducing geometric and resistive contributions. Such a study is still an
ongoing work, even if several interesting results were obtained up to now, from a
dedicated impedance simulations’ campaign with GdfidL code.

6.1 TDI taper optimization study
The TDI’s jaws presently installed in the LHC consist of one linear taper plus a sharp
discontinuity, as shown in Fig. 6.2, where the GdfidL model is reported. In view of

Figure 6.2. Jaw’s geometry of the TDI presently installed in the LHC, as modeled into
GdfidL.

the needed upgrade discussed at the beginning of the chapter, the LHC collimation
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team proposed a new taper geometry consisting of a simple linear flat taper, as
shown in Fig. 6.3 for the GdfidL model, in order to avoid the strong impedance of
the type step in - step out [29, 27] due to the sharp discontinuity. The possibility to

Figure 6.3. Linear jaw’s geometry of the TDI, as modeled into GdfidL.

minimize the impedance of a taper was studied in 2007 [75], by a nonlinear geometry
described by a function of the type

h(z) = hmin

[1 + zL(β−
1
2 − 1)]2

, (6.1)

where h(z) is the varying half height, z the longitudinal variable, hmin and hmax the
lower and upper height limits, L the taper length and β ≡ hmax

hmin
. Such a geometry

was modeled into GdfidL, as shown in Fig. 6.4, and proposed as a substitute of both
the sharp and linear taper geometry for the TDI design upgrade. In all the above

Figure 6.4. Nonlinear jaw’s geometry of the TDI, as modeled into GdfidL.
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taper GdfidL models, additional 10 cm in and out tubes were placed “ad-hoc”, to
guarantee numerical stability of the computation.

Thus GdfidL simulations of geometric and RW transverse broad-band impedances,
longitudinal and transverse loss factors, of the above TDI jaws were carried out,
tracing the wake field over a length s = 75 cm, driving a beam with a bunch
length σz = 7.5 cm. The RW contributions were computed for the R4550 graphite.
Simulations’ results are listed in Table 6.2, where the “NEW geometry” refers to the
linear one proposed by the LHC collimation team and the “Alternative geometry”
to the nonlinear one, whose proposal originated from the study being described
here. It is evident that, from the impedance point of view only, the best geometry

PRESENT geometry (linear flat taper + sharp discontinuity)
PEC R4550 graphite (σ∞ = 7.64 · 104 S/m)

k‖ [V/C] 1.73 · 109 2.59 · 109

Z⊥(0) [kΩ/m] 49.4 123.1
k⊥ [V/Cm] 5.32 · 1013 1.37 · 1014

NEW geometry (only longer and higher linear flat taper)
PEC R4550 graphite (σ∞ = 7.64 · 104 S/m)

k‖ [V/C] 1.59 · 109 2.69 · 109

Z⊥(0) [kΩ/m] 31.9 109.6
k⊥ [V/Cm] 3.46 · 1013 1.21 · 1014

Alternative geometry (non linear taper)
PEC R4550 graphite (σ∞ = 7.64 · 104 S/m)

k‖ [V/C] 1.61 · 109 2.82 · 109

Z⊥(0) [kΩ/m] 19.98 102
k⊥ [V/Cm] 2.09 · 1013 1.11 · 1014

Table 6.2. Resulting transverse impedance, longitudinal and transverse loss factors from
GdfidL simulations of the three jaws’ tapers geometries.

for TDI collimator taper is the non linear one. A significant reduction, indeed, of
a factor ≈ 2.5 in both zero frequency impedance and kick factor, with respect to
the present TDI geometry, is estimated for the geometric contributions. For the
RW contribution, instead, the reduction accounts only for a factor ≈ 1.2. The
geometrical longitudinal loss factor is observed to not change significantly, altough a
very tiny increase of the longitudinal loss factor, of about 9%, is expected.

6.2 TDIS’ real structures impedance study
The impedance study for the TDIS’ real structures is still an ongoing work. Never-
theless, several interesting preliminary results have been obtained so far.

A first upgraded TDIS model was conceived by the CERN EN-MME department
[76], whose CAD drawings are shown in Fig. 6.5. They represent a very complicated
structure of about 3 m length, in which the jaws’ tapers have an elliptical round
geometry. The reproduction of the corresponding STL files, again without any
semplification, into GdfidL is shown in Fig. 6.6. Any structural detail is very well
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(a)

(b)

(c)

Figure 6.5. CAD drawings for the first upgraded model of the TDIS collimator.
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resolved, even if a less fine mesh, with respect to the collimators simulated so far, of
1 mm in x, y directions and 0.5 mm in z was used. Due to the very long design, with

(a)

(b)

Figure 6.6. GdfidL elaboration of the first upgraded CAD model of the TDIS collimator.

many gaps, flanges, pumps and pipe interconnections, it was possible up to now to
compute the geometric longitudinal impedance only, with the available computing
resources of EngPara, trancing the wake at most over a length s = 50 m. The
results for the real part of the longitudinal impedance are plotted in Fig. 6.7(a),
for the TDI with 25 mm of jaws’ half gap. They were quite encouraging already at
this stage. Dedicated impedance measurements with wire technique, performed at
CERN, revealed indeed the presence of many harmful trapped modes [77].

A comparison of the simulated impedance with the experimental one shown in
Fig. 6.7, exhibit qualitatively a very similar impedance pattern. The measurements
were done on the whole TDI structure, including Hexagona Boron Nitride (hBN)
coated blocks and the two Al+Cu and Cu blocks. The upper jaw was moved to
−2 mm below the geometrical center and the lower jaw to 12 mm, thus with a full gap
of 10 mm. The simulated structure, on the other side, had an half gap of ±25 mm,
thus a full gap of 50 mm. What is observed from the comparison in Fig. 6.7, is that
a small impedance peak is computed at f ≈ 0.5 GHz, high narrow peaks in the range
1 GHz / f / 1.1 GHz, a wider peak at f ≈ 1.5 GHz and broader peaks with smaller
amplitudes at higher frequencies. This is an important result, given that a) the
simulations were performed for the geometric impedance only, while measurements
were done on the real collimator with all resistive and dispersive materials, b) the
measurements with wire technique can lead to HOMs frequencies shift toward higher
values and c) the HOMs tend to have lower frequencies for wider gaps.
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(a)

(b)

(c)

Figure 6.7. (a) TDIS geometric longitudinal impedance from GdfidL simulation, for 25 mm
half gap, (b) TDIS longitudinal measurement experimental setup and (c) measurement
results.
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(a)

(b) (c)

(d) (e)

Figure 6.8. CAD drawings for the second upgraded model of the TDIS collimator.

Figure 6.9. GdfidL elaboration of the second upgraded CAD model of the TDIS collimator.
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A second upgraded TDIS design [76] was simulated, whose CAD drawings are
shown in Fig. 6.8. The whole structure (Fig. 6.8(a)) was revised with respect to
the previous one, changing the jaws’ material of the first block only and leaving the
other two blocks the same (Fig. 6.8(b) and Fig. 6.8(c)), modeling asymettrically the
input and output pipes (Fig. 6.8(d)) and leaving the jaws’ elliptical round taper on
the first block only, modifying the other two blocks with flat rectangular taper jaws
(Fig. 6.8(e)). Moreover, the modules interconnections were were not oval anymore,
but it was cut on one side due to specific request of the team computing the radiation
to equipment and resulting potential damage [78]. A detailed view of the tapering
region, of the GdfidL simulated geometry, is shown in Fig. 6.9.

The geometric longitudinal wake field traced over a length of about 30 m and the
corresponding real and imaginary parts of the impedance are shown in Fig. 6.10 and
Fig. 6.11, respectively, together with the corresponding results for the first model
discussed before.

As a first comment, it is seen from Fig. 6.10 that in this second case it was
possible to obtain the wake field computed up to s ≈ 25 m only. This can probably
explain the impedance HOMs splitting appearing at around 750 MHz. Both from
real and imaginary parts of the impedance plotted in Fig. 6.11(a) and Fig. 6.11(b),
however, it can be concluded that a significant improvement was achieved, from the
geometric longitudinal impedance point of view, with the new upgraded TDIS model.
A loss factor reduction of ∼ 29% has been achieved in this case, as it resulted from
computations to be 7.14 ·1011 V/C for the first model and 5.04 ·1011 V/C for the new
one. Moreover, the strong modes at around 1 GHz are heavily damped, but HOMs
appear to be strongly damped at almost all frequencies, what is the most critical
goal in view of the beam induced overheating reduction efforts. Its overcoming by
means of careful TDIS design, minimizing the impedance charachterizing it in detail,
still deserves further investigations and dedicated extensive simulation campaigns.

Figure 6.10. Longitudinal wake field comparison for the first and second TDIS upgraded
models.
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(a)

(b)

Figure 6.11. Comparison between th longitudinal (a) real and (b) imaginary parts of the
impedance, for the first and second TDIS upgraded models.
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Chapter 7

Conclusions

Numerical simulations of wake fields and impedances were carried out for 3 differ-
ent kinds of LHC collimators: LHC Run I TCS/TCT collimators without BPM
pickup buttons, LHC Run II TCS/TCT collimators with BPMs and TDI injection
collimators, by means of GdfidL electromagnetic code. For the first time in the
field of impedance computations, a complete and detailed simulation campaign of
collimators’ real structures, including the properties of real and lossy dissipative ma-
terials (CFC and W resistive walls, TT2-111R ferrite). This task was accomplished
using huge real CAD (STL) designs and the GdfidL parallelization on the CERN
Engpara dedicated cluster. For this puropose several benchmark numerical tests were
performed for resistive walls and TT2-111R ferrite, using parallel computing with
GdfidL code engaging billions of mesh points. The performed numerical tests have
confirmed that GdfidL reproduces very well the properties of the lossy dispersive
materials. The simulation test results for the resistive walls and the lossy ferrites
are in a good agreement with available analytical formulae and the results of other
numerical codes and semi-analytical models.

For LHC Run I TCS/TCT collimators, the comparison of the transverse kick
factors calculated for five different jaws’ half gaps, has shown that the geometric
impedance contribution is not negligible with respect to the resistive wall one. The
study has contributed to the refinement of the LHC impedance model, as a result of
the geometrical collimator impedance accounting for approximately 30% of the total
LHC impedance budget, at frequencies close to 1 GHz.

For the LHC Run II TCS/TCT collimators, the numerical studies of the
impedance have shown that the longitudinal higher order modes till 1.2 GHz are
heavily damped by the TT2-111R ferrite blocks and by the resistive contribution
of the jaws. This is very important for the heating reduction of the collimators in
the multibunch regime (for the nominal LHC bunches 7.5 cm long). The transverse
modes at low frequencies are less damped, there are still residual transverse HOMs
at frequencies around 100 MHz and 200 MHz with non-negligible shunt impedances.
The calculated frequencies of the modes are in remarkable agreement with the loop
measurements. The shunt impedances of the modes obtained numerically agree
within a factor of 2 with the experimental data of the wire measurements performed
by the CERN impedance group. Moreover, the broad-band transverse impedance of
the new double taper collimators are evaluated to be approximately by 20% higher
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with respect to that of the single taper secondary collimators.
The taper’s shape of the TDI collimator jaws was optimized, including the

geometric impedance and resistive walls. It was shown that, from the impedance
point of view, the best geometry is the non linear one. A significant reduction in
both zero frequency impedance and kick factor, with respect to the present TDI
geometry, was calculated for both the geometric and resistive wall contributions,
altough a tiny increase of the longitudinal loss factor is expected.

Detailed TDI’s real structure impedance study is still an ongoing work. However
good and encouraging preliminary results were gained already at this stage. For
instance, computed HOMs’ pattern in geometrical longitudinal impedance is very
similar to that found experimentally by means of wire measurements performed
at CERN, taking into account the different conditions between simulations and
measurements. This is very important in view of the next detailed HOMs character-
ization like that performed for Run II TCS/TCT collimators. For the second follow
up TDI model the simulations results show an estimated reduction of about 29% in
the loss factor, and a significantly reduced longitudinal impedance.
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Appendix A

The linear accelerator model

A circular accelerator can be modeled as in Fig. 2.1, with the beam circulating inside
a metallic vacuum chamber, of varying cross section, on a trajectory of circumference
2πR. Given the simple harmonic oscillators describing the unperturbed single
particle motion, in the x, y, z directions with angular frequencies ωx0, ωy0 and
ωz0, the tunes νx0, νy0 andνz0 can be defined as these frequencies divided by the
synchronous particle1 revolution frequency ω0. It results, in general, νx0, νy0 � 1
and νz0 � 1.

All other particles’ motion is described in a six dimensional phase space, whose
coordinates are (x, x′, y, y′, z, δ). The coordinates x′ = dx /ds and y′ = dy / ds are
the slopes of the horizontal and vertical coordinates of the particle with respect
to the reference orbit, whereas δ = ∆P/P is the relative momentum error of the
particle. The unperturbed equation of motions for single particles are

x′′ +
(
νx0
R

)2
x = 0, (A.1)

y′′ +
(
νy0
R

)2
y = 0, (A.2)

z′ = −ηδ, (A.3)
δ′ = 0, for unbunched beams, (A.4)

δ′ = 1
η

(
νs0
R

)2
z, for bunched beams, (A.5)

where a prime indicates the derivative with respect to s. In the above equations the
slippage factor has been defined as

η = α− 1
γ2 , (A.6)

where α is the momentum compaction factor, usually positive in accelerator rings2,
1With synchronous particle the reference particle O of Fig. 2.1 is concerned, which has exactly

the design energy and stays on the design orbit in the accelerator. Its trajectory is designated by
the coordinate s, which is a time variable.

2There are also rings for which α < 0, e.g. the Low Energy Antiproton Ring (LEAR) at CERN,
where lower momentum particles have longer closed orbits or larger radial excursions than higher
momentum particles. A negative momentum compaction factor does imply an imaginary transition
energy, thus an always negative slippage factor and a ring always below transition.
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and γ the relativistic Lorentz factor. The first two eqs. A.1 and A.2 describe the
simple harmonic property of the transverse betatron oscillations of the particles.
Usually the transverse tunes are related to the transverse β functions of the machine
optics [28] as

νx0 = R

βx
and νy0 = R

βy
, (A.7)

where 2πβx,y are the betatron oscillation wavelengths.
For γ →∞, the slippage factor η ≈ α and η > 0. For γ < γtr ≡ 1/

√
α, known

as transition energy, η becomes negative. The above condition is commonly referred
to as “below transition” and is usually a property of low energy hadron rings, while
the opposite one γ > γtr as “above transition”, mostly encountered in electron rings
and high energy proton rings, in which the particle velocity v ≈ c. At transition,
η = 0, the particles’ dynamics in the longitudinal phase space freezes; under this
circumstances the beam is most vulnerable to perturbations. When an accelerator
is operated below transition, any particle with an energy slightly higher than the
reference one (δ > 0) will have its longitudinal coordinate increasing with time,
i.e. z′ > 0. Above transition, instead, any particle with an energy higher then the
reference one will slow down, with z′ < 0, even if its velocity is higher than that of
the synchronous particle. This phenomenon is called the negative mass effect and
relies on the fact that particles with higher energies, with respect to the synchronous
particle, must circulate in the accelerator on larger orbits.

The longitudinal synchrotron oscillation can be obtained combining eqs. A.3
and A.5 for bunched beams,

z′′ +
(
νs0
R

)2
z = 0, (A.8)

whereas it is trivial to mention that for unbunched beams no longitudinal focusing
does occur.

Equations A.1-A.5 describe the linear accelerator model and the unperturbed
motions of beam particles. Let a perturbation affect, for example, the focusing in
the y direction, being the perturbation linear in y:

y′′ +
(
νy0
R

)2
y = Ky. (A.9)

The perturbed motion can be described by a perturbed tune

ν2
y = ν2

y0 −KR2, (A.10)

from which it can be deduced that for small perturbation, |KR2| � ν2
y0, the tune

has shifted by an amount

∆νy = νy − νy0 = −KR
2

2νy0
. (A.11)

This result would have been identical in the case of a linear perturbation in x. The
quantity ∆ν is known as tune shift and plays a crucial role in the study of collective
effects. For perturbations driven by collective electromagnetic fields, the tune shifts
are generally complex.
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Appendix B

The GdfidL Finite Difference
code

GdfidL is a Finite Difference Time Domain (FDTD) code that solves approximately
Maxwell’s equations by means of the curl operators discretization. For homogeneous
materials the process follows the Yee’s algorithm [79]. For non homogeneous dielectric
or permeable materials, the discretization is performed based on the Weiland method
[80]. The program is composed of two field solvers, one that computes resonant
fields in loss-free structures and the other that computes time dependent fields,
scattering parameters and wake potentials in lossy or loss-free structures [81]. Its
main advantage is the grid cells being needed only in regions which are not filled with
electric or magnetic conducting materials, what has as a consequence a reduction in
memory and CPU usage.

The discretization of the curl operators allows to compute the time derivative of
a field component in a grid, from the values of the four sorrounding dual components.
Let each field component in the computational volume have a triple index i, j, k,
the resulting difference equations in loss-free regions are approximated as (here the
d
dtHz component is taken as an example)

d
dtH

i,j,k
z ≈

∆x(Ei+1,j,k
x − Ei,j,kx ) + ∆y(Ei+1,j,k

y − Ei,j,ky )
∆x∆y

. (B.1)

Despite of being quite simple to implement in a computer code, this difference
equation has the disadvantage of assigning grid cells also to regions where the
material is ideal conducting, what makes managing computational volumes, in which
many geometries are present, particularly resource demanding.

The approach of GdfidL is quite different. Instead of using a triple index to
identify a field component in the computational volume, the indices n+

x (l) and n+
y (l)

are introduced, for the neighbour cell in the positive x or y directions of the l − th
cell, as in Fig. B.1. Thus the equation for the d

dtHz field component now reads

d
dtH

l
z ≈

∆x(En
+
x (l)

x − Elx) + ∆y(E
n+
y (l)

y − Ely)
∆x∆y

. (B.2)

Let ~h and ~e be arithmetic vectors denoting the discrete electomagnetic degrees of
freedom (i.e. all the field components of ~E and ~H), then the equations for all the



103

Figure B.1. The l − th gridcell with its six field components. Additionally the two field
components of neighbour cells are shown, which are needed to compute the curl of ~E at
the position of H l

z (the field components of H are denoted by B in this picture) [81].

components of ~H in the computational volume, similar to eq. B.2, can be written in
matrix form as

d
dt
~h = −Ce~e (B.3)

and, for d
dt
~E, as

d
dt~e = [ε]−1Ch[µ]−1~h = Ch∗~h. (B.4)

Once the curl operators have been discretized, the fields in the time domain are
computed at the next timestep from the previous fields, on the basis of the leap frog
scheme [79].

Resonant fields, instead, are computed by GdfidL solving an eigenvalue problem
derived directly from eqs. B.3 and B.4. 1 Substituting ~h given by eq. B.3 into eq. B.4
and taking the Fourier harmonic of the time derivative, the equation describing the
algebraic eigenvalue problem is found to be:

−Ch∗Ce~e = −ω2~e. (B.5)

The lowest nonzero eigenvalues and their corresponding eigenvectors are found with
the algorithm by Tückmantel [82].

The S-parameters GdfidL computation proceeds performing a time domain
simulation and then a Fourier transform of the histories of the tangential fields at the

1Resonant fields can be computed by exciting a structure with a broadband pulse, then examining
the ringing of the fields. But such an approach can be valid only if a good resolution in frequency is
not demanded, given this latter requiring a long simulation time, as ∆f = 1/T .
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ports of the structure. At the locations where the waveguide crosses the boundary
of the computational volume, Absorbing Boundary Conditions (ABCs) are applied.
They are implemented into the code as orthogonal functions which are the tangential
fields of the TE, TM and TEM waveguides modes.

In order to compute wakepotentials, finally, a rigid beam is allowed to traverse
the computational volume. For long range wakefields, ABCs must be applied where
the beam enters and exits the cavity. The primary field of the charge, in this case,
cannot be expanded in the waveguides modes. Thus, with known velocity of the
charge, the primary field at the ABCs is also known and can be subtracted from the
total field. The scattered waves remaining can be expanded in orthogonal waveguide
modes.

As a concluding remark, generally the solution of difference equations does differ
from the solution of the differential equations. There are two main sources of error,
i.e. the approximation of the differential equation by a difference equation - for a
homogeneous mesh this error is proportional to the dquare of the mesh spacing -
and the error due to the approximation of the material distribution. The coefficients
of the difference equations depend on the material parameters. In the “staircase”
approximation, constant material parameters are assumed in each cell of the grid.
Better approximations use the prismatic cells. GdfidL implements a mesh-filling
that is constructed by a boolean combination of prismatic fillings. The reason for
such a choice is that the finite difference coefficients for a field component depend
only on the material in the immediate vicinity of the edge where the component is
defined on. This guarantees a reduction of the frequency error by a factor of ten, as
compared to a prismatic filling [83].
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