# # Some helpful symbols: # define(EL, 1) define(MAG, 2) define(INF, 1000) # # We define symbols that will be used to describe our cavity: # The names of the symbols can be up to 32 characters long, # The values of the symbols can be up to 128 characters long. # define(OuterRadius , eval(46.23e-2/2) ) define(InnerRadius , eval(13.00e-2/2) ) define(GapLength , 27.60e-2 ) define(CurveRadius , 0.585e-2 ) define(BeamPipeRadius, eval(14.17e-2/2) ) define(TaperLength , 13.2e-2 ) ### ### We enter the section "-general" ### Here we define the name of the database where the ### results of the computation shall be written to. ### (outfile= ) ### We also define what names shall be used for scratchfiles. ### (scratchbase= ) ### -general outfile= /tmp/bruw1931/garbage/doris scratchbase= /tmp/bruw1931/garbage/doris-scratch ### ### We define the borders of the computational volume, ### we define the default mesh-spacing, ### and we define the conditions at the borders: ### -mesh spacing= eval(InnerRadius/15) pxlow= eval(-1.1*OuterRadius) pylow= eval(-1.1*OuterRadius) pzlow = eval(-(GapLength/2+TaperLength+9e-2)) pxhigh= 0 pyhigh= 0 pzhigh= 0 # # The conditions to use at the borders of the computational volume: # cxlow= electric, cxhigh= magnetic cylow= electric, cyhigh= magnetic czlow= electric, czhigh= electric ###### ###### ###### ###### # # we fill the universe with metal # -brick material= EL xlow= -INF, xhigh= INF ylow= -INF, yhigh= INF zlow= -INF, zhigh= INF doit # # we carve out the body of the cavity # -gbor material= 0 origin= (0,0,0) zprimedirection= (0,0,1) rprimedirection= (1,0,0) range= (0,360) clear # clear any old polygon-description # point= (z,r) point= (eval(-(GapLength/2+TaperLength+10e-2)), 0 ) # p1 point= (eval(-(GapLength/2+TaperLength+10e-2)), BeamPipeRadius) point= (eval(-(GapLength/2+TaperLength )), BeamPipeRadius) point= (eval(-(GapLength/2+CurveRadius )), InnerRadius ) arc, radius= CurveRadius, size= small, type= counterclockwise point= (eval(-(GapLength/2 )), eval(InnerRadius+CurveRadius)) point= (eval(-(GapLength/2 )), OuterRadius ) ## crossing z=0 plane point= (eval( (GapLength/2 )), OuterRadius ) point= (eval( (GapLength/2 )), eval(InnerRadius+CurveRadius)) arc, radius= CurveRadius, size= small, type= counterclockwise point= (eval( (GapLength/2+CurveRadius )), InnerRadius ) point= (eval( (GapLength/2+TaperLength )), BeamPipeRadius) point= (eval( (GapLength/2+TaperLength+10e-2)), BeamPipeRadius) point= (eval( (GapLength/2+TaperLength+10e-2)), 0 ) show= now doit -mesh # # enforce two meshplanes, at the bottom and the top of the cavity: # zfixed(2, eval(-GapLength/2), eval(GapLength/2) ) -volumeplot ## doit -eigenvalues solutions= 15 estimation= 10e9 # the estimated highest frequency doit