Next: Computing Eigenvalues Up: Modelling the geometry Previous: Boundary conditions

Summary

You have to give gd1 the following information: The complete inputfile up to now (doris04.gdf) is:
 #
 # Some helpful symbols:
 #
 define(EL, 1) define(MAG, 2)
 define(INF, 1000)

 #
 # We define symbols that will be used to describe our cavity:
 # The names of the symbols can be up to 32 characters long,
 # The values of the symbols can be up to 128 characters long.
 #
 define(OuterRadius   , eval(46.23e-2/2) )
 define(InnerRadius   , eval(13.00e-2/2) )
 define(GapLength     ,      27.60e-2    )
 define(CurveRadius   ,      0.585e-2    )
 define(BeamPipeRadius, eval(14.17e-2/2) )
 define(TaperLength   ,       13.2e-2    )

 ###
 ### We enter the section "-general"
 ### Here we define the name of the database where the
 ### results of the computation shall be written to.
 ###    (outfile= )
 ### We also define what names shall be used for scratchfiles.
 ###     (scratchbase= )
 ###
 -general
    outfile= /tmp/bruw1931/garbage/doris
    scratchbase= /tmp/bruw1931/garbage/doris-scratch

 ###
 ### We define the borders of the computational volume,
 ### we define the default mesh-spacing,
 ### and we define the conditions at the borders:
 ###
 -mesh
     spacing= eval(InnerRadius/15)
     pxlow= eval(-1.1*OuterRadius)
     pylow= eval(-1.1*OuterRadius)
     pzlow = eval(-(GapLength/2+TaperLength+9e-2))
     pxhigh= 0
     pyhigh= 0
     pzhigh= 0

     #
     # The conditions to use at the borders of the computational volume:
     #
     cxlow= electric, cxhigh= magnetic
     cylow= electric, cyhigh= magnetic
     czlow= electric, czhigh= electric

 ######
 ######
 ######
 ######
 #
 # we fill the universe with metal
 #

 -brick
     material= EL
     xlow= -INF, xhigh= INF
     ylow= -INF, yhigh= INF
     zlow= -INF, zhigh= INF
     doit
 
 #
 # we carve out the body of the cavity
 #

 -gbor
    material= 0
    origin= (0,0,0)
    zprimedirection= (0,0,1)
    rprimedirection= (1,0,0)
    range= (0,360)

    clear      # clear any old polygon-description
      # point= (z,r)
    point= (eval(-(GapLength/2+TaperLength+10e-2)), 0             ) # p1
    point= (eval(-(GapLength/2+TaperLength+10e-2)), BeamPipeRadius)
    point= (eval(-(GapLength/2+TaperLength      )), BeamPipeRadius)
    point= (eval(-(GapLength/2+CurveRadius      )), InnerRadius   )
      arc, radius= CurveRadius, size= small, type= counterclockwise
    point= (eval(-(GapLength/2                  )), eval(InnerRadius+CurveRadius))
    point= (eval(-(GapLength/2                  )), OuterRadius   )
     ## crossing z=0 plane
    point= (eval( (GapLength/2                  )), OuterRadius   )
    point= (eval( (GapLength/2                  )), eval(InnerRadius+CurveRadius))
      arc, radius= CurveRadius, size= small, type= counterclockwise
    point= (eval( (GapLength/2+CurveRadius      )), InnerRadius   )
    point= (eval( (GapLength/2+TaperLength      )), BeamPipeRadius)
    point= (eval( (GapLength/2+TaperLength+10e-2)), BeamPipeRadius)
    point= (eval( (GapLength/2+TaperLength+10e-2)), 0             )
 show= now
 doit

 -mesh
    #
    # enforce two meshplanes, at the bottom and the top of the cavity:
    #
    zfixed(2, eval(-GapLength/2), eval(GapLength/2) )

 -volumeplot
##    doit

 -eigenvalues
    solutions= 15
    estimation= 10e9   # the estimated highest frequency
    doit