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0.1 What this paper contains

We got detailed technical drawings1 of a Doris cavity.
The data from these drawings are transformed step by step into an inputfile for gd1.

Every step is explained in detail. Numerous hints are given, how one effectively models
ones geometry. When we have modelled the geometry accurately enough, we compute
the fields and wakepotentials.

1from Mr. Ping J. Chou of the SRRC of Taiwan
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Part I

Analysing the rotational symmetric

part of the cavity
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Chapter 1

Meshing

1.1 Recommended usage of gd1

The most effective usage of gd1 is:

• Write an inputfile

• Until gd1 does what you want him to do:

– feed gd1 with the inputfile

– Change the inputfile

If you work with several xterms, this cycle is very fast. Figure 1.1 shows a typical
“desktop“ with three xterms. The upper right xterm is a terminal running an editor
to change the inputfile, the lower right xterm is used to feed gd1 with the actual
inputfile, and a third xterm is used to run another instance of gd1. This second
instance of gd1 is used to look-up the syntax of gd1’s commands.
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Figure 1.1: Screenshot of a typical desktop when one uses gd1. The xterm in the upper
right corner is used to edit the inputfile, the xterm in the lower right is used to feed gd1

with the inputfile, and the long xterm on the right side runs another instance of gd1.
This second instance of gd1 is used to look-up the syntax of gd1’s command language.
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Figure 1.2: A drawing of the main cavity.

1.2 Modelling the geometry

The cavity we want to analyse is essentially a body of revolution. There are two plungers
attached, that are presumably for tuning the cavity. In addition, a small tube is at-
tached, that is probably used for maintaining the vacuum.

In the first step we model the cavity and the beam-pipes. We do this by specifying
a polygonal description of the boundary in the r-z-plane. The inputfile that describes
the boundary is:

#

# Some helpful symbols:

#

define(EL, 1) define(MAG, 2)

define(INF, 1000)

#

# We define symbols that will be used to describe our cavity:

# The names of the symbols can be up to 32 characters long,

#

define(OuterRadius , 46.23e-2/2 )

define(InnerRadius , 13.00e-2/2 )

define(GapLength , 27.60e-2 )

define(CurveRadius , 0.585e-2 )

define(BeamPipeRadius, 14.17e-2/2 )

define(TaperLength , 13.2e-2 )

-brick
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material= EL

xlow= -INF, xhigh= INF

ylow= -INF, yhigh= INF

zlow= -INF, zhigh= INF

doit

#

# we carve out the body of the cavity

#

-gbor

material= 0

origin= (0,0,0)

zprimedirection= (0,0,1)

rprimedirection= (1,0,0)

range= (0,360)

clear # clear any old polygon-description

# point= (z,r)

point= ( -(GapLength/2+TaperLength+10e-2), 0 ) # p1

point= ( -(GapLength/2+TaperLength+10e-2), BeamPipeRadius )

point= ( -(GapLength/2+TaperLength ), BeamPipeRadius )

point= ( -(GapLength/2+CurveRadius ), InnerRadius )

arc, radius= CurveRadius, size= small, type= counterclockwise

point= ( -(GapLength/2 ), InnerRadius+CurveRadius )

point= ( -(GapLength/2 ), OuterRadius )

## crossing z=0 plane

point= ( (GapLength/2 ), OuterRadius )

point= ( (GapLength/2 ), InnerRadius+CurveRadius )

arc, radius= CurveRadius, size= small, type= counterclockwise

point= ( (GapLength/2+CurveRadius ), InnerRadius )

point= ( (GapLength/2+TaperLength ), BeamPipeRadius )

point= ( (GapLength/2+TaperLength+10e-2), BeamPipeRadius )

point= ( (GapLength/2+TaperLength+10e-2), 0 )

show= now

doit

-volumeplot

doit

This inputfile can be found as ”/usr/local/gd1/Tutorial-SRRC/doris00.gdf”. When we
feed this file into gd1 via the command ”gd1 < doris00.gdf”, we get a desktop similiar
to the one shown in figure 1.3

gd1 does not what we want, we do not get a ”volumeplot”, although we requested
one. But gd1 gives us a hint what we made wrong:

8



Figure 1.3: Screenshot of the desktop when the inputfile doris00.gdf has been fed into
gd1. gd1 has popped up an instance of mymtv2 that shows the outline of the specified
polygon.
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volumeplot> doit

# I am checking the mesh settings..

.. plane x= xlow in "-mesh" is undefined..

.. plane x= xhigh in "-mesh" is undefined..

.. plane y= ylow in "-mesh" is undefined..

.. plane y= yhigh in "-mesh" is undefined..

.. plane z= zlow in "-mesh" is undefined..

.. plane z= zhigh in "-mesh" is undefined..

*** section -mesh: "spacing= undefined"..

*** errors in "mesh"..

*** Since this not seems to be an interactive session,

*** I decide to treat this as a fatal error.

*** Fix the input.

stop

When we say ”doit” in the section ”-volumeplot”, gd1 tries to generate the mesh. But
in order to generate the mesh, gd1 needs to know

• what the extreme coordinates of the computational volume shall be,

• what the default mesh spacing shall be.

All these informations have to be given to gd1 before a volumeplot is requested. Since
gd1 has detected that it is fed by an inputfile and is not used interactively, it stops as
soon some essential information is not available. When not run interactively, gd1 also
stops when some syntax error is present in the inputfile.

To give gd1 the needed information, we change our inputfile. We insert the following
lines somewhere before ”-volumeplot”:

###

### We define the borders of the computational volume,

### and we define the default mesh-spacing.

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius, pxhigh= 1.1*OuterRadius

pylow= -1.1*OuterRadius, pyhigh= 1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pzhigh= +(GapLength/2+TaperLength+9e-2)

The so edited inputfile can be found as ”/usr/local/gd1/Tutorial-SRRC/doris01.gdf”.
When we feed gd1 with this inputfile (gd1 < doris01.gdf) we get a screen similiar

to the one shown in figure 1.4
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Figure 1.4: Screenshot of the desktop when the inputfile doris01.gdf has been fed into
gd1. gd1 has popped up an instance of gd1.3dplot that shows the generated mesh.
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1.2.1 Enforcing Meshplanes

For bodies of revolution, gd1 has no algorithm to decide where to place the meshplanes.
We have to give gd1 a hint. We want to have meshplanes exactly at the bottom and
the top of our cavity. We specify the wanted locations of the meshplanes in the section
-mesh. We edit our inputfile so that it contains

-mesh

#

# enforce two meshplanes, at the bottom and the top of the cavity:

#

zfixed(2, -GapLength/2, GapLength/2 )

The semantics of zfixed(N, Z0, Z1) is: N is the number of meshplanes to enforce,
the meshplanes are placed equidistantly between Z0 and Z1. It is allowed to specify
positions of mesh-planes that are outside of the computational volume.

Since we have had already a quite fine mesh, the effect is not visible and is not shown
here.

There is not much gain if one tries to enforce meshplanes at the outer radii of the
cavity and the beam-pipes.
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1.2.2 Symmetry Planes

We now have our main cavity discretised. In principle, we could now compute the
resonant fields in it. But we better use the symmetries of the cavity. We have three
symmetry planes: The cavity is symmetric with respect to the plane z=0, and to the
plane x=0 and to the plane y=0.

We specify that we only want to compute in the volume x ≤ 0, y ≤ 0, z ≤ 0
by specifying the borders of the computational volume accordingly. We change the
specifications in the inputfile to

###

### We define the borders of the computational volume,

### and we define the default mesh-spacing.

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pxhigh= 0

pyhigh= 0

pzhigh= 0

When we feed gd1 with this inputfile (gd1 < doris02.gdf) we get a screen similiar
to the one shown in figure 1.5

1.2.3 Boundary conditions

Now that we have taken care of the symmetry planes, we have to specify the boundary
conditions at these planes. We have to tell gd1 what conditions are to be applied at
the six planes x=xlow, x=xhigh, y=ylow, y=yhigh, z=zlow, z=zhigh. The possible
values are: electric boundary conditions, magnetic boundary conditions, and periodic
boundary conditions. For our problem, we only need electric and magnetic boundary
conditions. We specify these conditions again in the section ”-mesh”. We edit our
inputfile such that the entries for -mesh now look like:

###

### We define the borders of the computational volume,

### we define the default mesh-spacing,

### and we define the conditions at the borders:

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)
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Figure 1.5: Screenshot of the desktop when the inputfile doris02.gdf has been fed into
gd1. gd1 has popped up an instance of gd1.3dplot that shows the generated mesh. We
now have only the eighth part of the total structure.

14



pxhigh= 0

pyhigh= 0

pzhigh= 0

#

# The conditions to use at the borders of the computational volume:

#

cxlow= electric, cxhigh= magnetic

cylow= electric, cyhigh= magnetic

czlow= electric, czhigh= electric

We are not done yet: Since gd1 can compute resonant fields and time dependent
fields, we have to specify what kind of field we are interested in. We want to compute
resonant fields, so we specify this by entering at the end of our inputfile:

-eigenvalues

solutions= 15 # we want to compute with 15 basis vectors

estimation= 10e9 # the estimated highest frequency

doit

When we feed gd1 with this inputfile (gd1 < doris03.gdf), gd1 complains about an
IO-error:

*** A component of the path prefix does not exist or the Path parameter points

*** to an empty string.

CreateDirectory: cmd: mkdir /tmp/--username--/--SomeDirectory--/Results

error code: 2

** cannot open catalogue: iostat: 14

** catalogue: "/tmp/--username--/--SomeDirectory--/Results/catalogue"

** error msg: "No such file or directory / permission denied"

InitializeDatabase: cannot read catalogue.. iostat: 14

*** check "outfile" in section "-general"..

*** errors in settings

*** Since this not seems to be an interactive session,

*** I decide to treat this as a fatal error.

*** Fix the input.

stop

We have not yet specified where the results of your computation shall be written to! We
do this by editing our inputfile:

###

### We enter the section "-general"

### Here we define the name of the database where the

### results of the computation shall be written to.

### (outfile= )

### We also define what names shall be used for scratchfiles.
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### (scratchbase= )

###

-general

outfile= /tmp/UserName/doris

scratchbase= /tmp/UserName/doris-scratch

1.2.4 Summary

You have to give gd1 the following information:

• what geometry you are interested in (-brick -gbor etc),

• what the boundary planes of your computational volume are (-mesh),

• what the conditions at these boundary planes are (-mesh),

• what the default mesh density shall be (-mesh),

• where gd1 shall store the result (-general),

• what kind of computation gd1 shall perform (-eigenvalues, -fdtd).

The complete inputfile up to now (doris04.gdf) is:

#

# Some helpful symbols:

#

define(EL, 1) define(MAG, 2)

define(INF, 1000)

#

# We define symbols that will be used to describe our cavity:

# The names of the symbols can be up to 32 characters long,

#

define(OuterRadius , 46.23e-2/2 )

define(InnerRadius , 13.00e-2/2 )

define(GapLength , 27.60e-2 )

define(CurveRadius , 0.585e-2 )

define(BeamPipeRadius, 14.17e-2/2 )

define(TaperLength , 13.2e-2 )

###

### We enter the section "-general"

### Here we define the name of the database where the

### results of the computation shall be written to.

### (outfile= )
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### We also define what names shall be used for scratchfiles.

### (scratchbase= )

###

-general

outfile= /tmp/UserName/doris

scratchbase= /tmp/UserName/doris-scratch

###

### We define the borders of the computational volume,

### and we define the default mesh-spacing.

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pxhigh= 0

pyhigh= 0

pzhigh= 0

#

# The conditions to use at the borders of the computational volume:

#

cxlow= electric, cxhigh= magnetic

cylow= electric, cyhigh= magnetic

czlow= electric, czhigh= electric

########

#

# We fill the universe with metal

#

-brick

material= EL

xlow= -INF, xhigh= INF

ylow= -INF, yhigh= INF

zlow= -INF, zhigh= INF

doit

#

# we carve out the body of the cavity

#

-gbor

material= 0

origin= (0,0,0)

17



zprimedirection= (0,0,1)

rprimedirection= (1,0,0)

range= (0,360)

clear # clear any old polygon-description

# point= (z,r)

point= ( -(GapLength/2+TaperLength+10e-2), 0 ) # p1

point= ( -(GapLength/2+TaperLength+10e-2), BeamPipeRadius )

point= ( -(GapLength/2+TaperLength ), BeamPipeRadius )

point= ( -(GapLength/2+CurveRadius ), InnerRadius )

arc, radius= CurveRadius, size= small, type= counterclockwise

point= ( -(GapLength/2 ), InnerRadius+CurveRadius )

point= ( -(GapLength/2 ), OuterRadius )

## crossing z=0 plane

point= ( (GapLength/2 ), OuterRadius )

point= ( (GapLength/2 ), InnerRadius+CurveRadius )

arc, radius= CurveRadius, size= small, type= counterclockwise

point= ( (GapLength/2+CurveRadius ), InnerRadius )

point= ( (GapLength/2+TaperLength ), BeamPipeRadius )

point= ( (GapLength/2+TaperLength+10e-2), BeamPipeRadius )

point= ( (GapLength/2+TaperLength+10e-2), 0 )

show= now

doit

-mesh

#

# enforce two meshplanes, at the bottom and the top of the cavity:

#

zfixed(2, -GapLength/2, GapLength/2 )

-volumeplot

## doit

-eigenvalues

solutions= 15

estimation= 10e9 # the estimated highest frequency

doit
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Chapter 2

Computing Eigenvalues

2.1 Adjusting ”estimation”

When we now feed gd1 with the edited inputfile (gd1 < doris04.gdf), the end of the
resulting output is:

boundary conditions:

xboundary= electric, magnetic

yboundary= electric, magnetic

zboundary= electric, electric

--------------------

i freq(i) acc(i) cont(i)

1 503.4599e+6 0.0037654709 0.0027611672 # "grep" for me

2 1.1576e+9 0.0363792177 0.0338547693 # "grep" for me

3 1.2000e+9 0.0270761163 0.0465387932 # "grep" for me

4 1.5669e+9 0.1173770231 0.2662151486 # "grep" for me

5 1.7357e+9 0.4963611925 1.0000000000 # "grep" for me

6 1.9216e+9 0.1752955583 0.5479572604 # "grep" for me

7 2.2211e+9 0.0811233028 0.3181446327 # "grep" for me

8 2.4446e+9 0.1903593461 0.8610742652 # "grep" for me

9 2.7054e+9 0.1513682675 0.5798372263 # "grep" for me

10 3.0470e+9 0.2475596875 1.0000000000 # "grep" for me

11 3.2898e+9 0.0970269338 0.4556358188 # "grep" for me

12 3.6312e+9 0.1308660265 0.5174922697 # "grep" for me

13 4.0755e+9 0.1248055514 0.5934680518 # "grep" for me

14 4.3644e+9 0.0810408709 0.2603226655 # "grep" for me

15 5.0381e+9 0.0901497971 0.3161751272 # "grep" for me

################################

# cpu-seconds for eigenvalues : 47

# start date : 30/11/2002

# end date : 30/11/2002
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# start time : 13:00:26

# end time : 13:01:32

# The computation of the eigenvalues has finished normally..

# Start the postprocessor to look at the results.

stop .. normal end ..

We see that the results are very bad. The accuracy of all modes is horrible. The reason
for this is: We did specify a badly wrong estimation of the highest resonant frequency
(We did specify estimation= 10e9). We change the inputfile such that we have

-eigenvalues

solutions= 15

estimation= 2e9 # the estimated highest frequency

doit

When we compute with the adjusted estimation (gd1 < doris05.gdf), we get as final
table:

boundary conditions:

xboundary= electric, magnetic

yboundary= electric, magnetic

zboundary= electric, electric

--------------------

The first 2 solutions seem to be static and are not saved.

i freq(i) acc(i) cont(i)

1 503.4601e+6 0.0000000341 0.0000000180 # "grep" for me

2 1.0594e+9 0.0000000000 0.0000000000 # "grep" for me

3 1.1579e+9 0.0000000010 0.0000000060 # "grep" for me

4 1.2001e+9 0.0000000003 0.0000000038 # "grep" for me

5 1.2528e+9 0.0000000000 0.0000000000 # "grep" for me

6 1.5070e+9 0.0000000001 0.0000000002 # "grep" for me

7 1.5445e+9 0.0000000001 0.0000000017 # "grep" for me

8 1.5679e+9 0.0000000028 0.0000000893 # "grep" for me

9 1.5926e+9 0.0000000003 0.0000000026 # "grep" for me

10 1.6717e+9 0.0000000002 0.0000000021 # "grep" for me

11 1.7208e+9 0.0000000139 0.0000002458 # "grep" for me

12 1.7544e+9 0.0000004046 0.0000086559 # "grep" for me

13 1.7950e+9 0.0000025979 0.0000567143 # "grep" for me

################################

# cpu-seconds for eigenvalues : 102

# start date : 30/11/2002

# end date : 30/11/2002

# start time : 13:04:35

# end time : 13:06:40
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# The computation of the eigenvalues has finished normally..

# Start the postprocessor to look at the results.

stop .. normal end ..

These results are accurate enough for now.
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Chapter 3

Computing secondary results with

gd1.pp

Now that we have computed the fields, we can use gd1.pp to look at the fields and to
compute secondary results, such as Q-values and shunt-impedances.

3.1 -general: what is the database

We have to tell gd1.pp where the results of our run of gd1 are stored. We tell gd1.pp

this in its section -general. We can specify the name of the resultfile in two ways: By
writing out the name of the file:

-general, infile= /tmp/UserName/doris

or by using the special name @last:

-general, infile= @last

When we use @last, gd1.pp looks up the name of the last resultfile in a special file
$HOME/name.of.last.gdfidl.file. This file is written by every run of gd1.

By the way: Both gd1 and gd1.pp understand almost all their commands also when
they are abbreviated. So we may tell gd1.pp to take the last resultfile eg. as follows:

-ge, i @last

3.2 -3darrowplot: Arrowplot of 3D-fields

We now enter the section -3darrowplot, and tell gd1.pp that we want to look at the
electric field pattern of the first stored field:

-3darrowplot

symbol= e_1

doit
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Abbreviated we may say eg.

-3da, sy e_1, d

We can look at several plots simultaneously. We just say that we want to have another
plot, and gd1.pp starts another instance of gd1.3dplot to show the plot. To have a
look at the first three modes, we say eg.

quantity= e

solution= 1, doit

so 2, doit

so 3, doit

The figure 3.1 shows the resulting desktop.
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Figure 3.1: Screenshot of the desktop. gd1.pp has popped up three instances of
gd1.3dplot, showing the electric field of the first three modes.
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Figure 3.2: Screenshot of the desktop. gd1.pp has popped up three instances of
gd1.3dplot, showing the magnetic field of the first three modes.

3.2.1 H-Fields

When we want to look at the magnetic fields, we choose quantity= h, or we specify as
symbol eg. symbol= h_1:

-3darrow

quantity= h

solution= 1, doit

solution= 2, doit

solution= 3, doit

The figure 3.2 shows the resulting desktop.
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3.3 Computing normalized shunt impedances R/Q

There are several definitions for a normalized shunt impedance floating around. We take
this one:

R/Q =
V V ∗

2ωW
(3.1)

where

• R/Q is the normalized shunt impedance,

• V is the complex voltage that would be seen by a test charge traversing the cavity
at a speed of βc0,

• ω is the circular frequency of the mode,

• W is the total stored energy in the cavity (both electric and magnetic energy).

If one evaluates the voltage seen by the test particle, one arrives at the result

V =

z=z2
∫

z=z1

E
z
(x, y, z)e

jωz

βc0 dz (3.2)

for a particle that travels in positive z-direction from z = z1 to z = z2.
We now enter the relevant sections of gd1.pp and explain how the quantities that

show up in the above formula can be computed.
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3.3.1 -lintegral: computes a line integral

To compute the complex voltage V , we enter the section -lintegral. Its menu is:

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -lintegral #

##############################################################################

# symbol = e_1 #

# quantity = e #

# solution = 1 #

# #

# direction = z #

# component = z #

# startpoint= ( 0.0, 0.0, -1.0e+30 ) #

# (used) : ( @x0: undefined, @y0: undefined, @z0: undefined ) #

# length = auto #

# (@length) : undefined #

# beta = 1.0 #

# frequency = auto -- [auto | Real] #

##############################################################################

# @vreal= undefined @vimag= undefined @vabs= undefined #

##############################################################################

# doit, ?, return, end, help #

##############################################################################

In order to compute our voltage, we have to specify what field shall be integrated, what
component of the field shall be integrated, along which direction we want to perform
the integration, and what the startpoint shall be. We specify this and perform the
integration (doit):

-lintegral

symbol= e_1

direction= z

component= z

startpoint= ( 0, 0, @zmin)

length= auto

doit
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Upon entering ”?”, gd1.pp shows us the changed menu now as:

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -lintegral #

##############################################################################

# symbol = e_1 #

# quantity = e #

# solution = 1 #

# #

# direction = z #

# component = z #

# startpoint= ( 0.0, 0.0, -360.0e-3 ) #

# (used) : ( @x0: 0.0, @y0: 0.0, @z0: -360.0e-3 ) #

# length = auto #

# (@length) : 360.0e-3 #

# beta = 1.0 #

# frequency = auto -- [auto | Real] #

##############################################################################

# @vreal= 13.88403 @vimag= -14.67090 @vabs= 20.19905 #

##############################################################################

# doit, ?, return, end, help #

##############################################################################

We see the startpoint that we entered is the same as the startpoint actually taken, the
length of the integration path is 360 mm, and the result of the integration is: Real
part is 13.88403 Volts, imaginary part is -14.67090 Volts, and the absolute value of
the voltage is 20.19905 Volts. We can write these numbers down on paper, but we
can also compute with them within gd1.pp. They are accessible as symbolic variables
@length, @vreal, @vimag, @vabs. We will use these variables later.

For our shunt impedance computation, we have to decide what value of the three
values we have to take. From a plot of the accelerating field strength as it is shown in
figure 3.3, we see that the field strength is even with respect to the plane z=0. The
accelerating voltage that would be seen by a particle traversing the whole structure
would therefore be twice the real part of the voltage in the half structure. In a full
structure, the imaginary part of the complex voltage would vanish. We therefore have
to take as V V ∗ four times the square of the real part @vreal.
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Figure 3.3: E
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component of the first mode on the axis x=y=0. Since only the part of
the structure below the plane z=0 is modeled, we only have direct information about
the field below z=0. Clearly, the E

z
-component is even with respect to the plane z=0.
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3.3.2 -energy: computes stored energy in electric or magnetic

field

The menu of the section -energy is:

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -energy #

##############################################################################

# symbol = e_1 #

# quantity = e #

# solution = 1 #

# #

# #

# @henergy : undefined (symbol: undefined, m: 1) #

# @eenergy : undefined (symbol: undefined, m: 1) #

##############################################################################

# doit, ?, return, end, help #

##############################################################################

We have to know both the energy in the electric field and in the magnetic field. But
since the fields are resonant fields, the energies are the same for both types of fields. So
it suffices to compute only the energy in the electric field:

-energy

quantity= e

solution= 1

doit

The result of the energy computation is now available in the menu, as well as the value
of the symbolic variable @eenergy.

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -energy #

##############################################################################

# symbol = e_1 #

# quantity = e #

# solution = 1 #

# #

# #

# @henergy : undefined (symbol: undefined, m: 1) #

# @eenergy : 98.21061e-12 (symbol: e_1, m: 2) #

##############################################################################

# doit, ?, return, end, help #

##############################################################################
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Since we have modelled only the eighth part of the structure (we did use all three
symmetry planes), the stored energy in the electric field of the whole structure is 8
times as high as @eenergy=98.21061e-12 Ws.

We now have all the necessary numbers to compute the normalized shunt impedance
of this first mode:

• The complex voltage that would be seen by a particle traversing the full cavity is
two times @vreal = 13.88,

• the frequency of the mode is accessible as @frequency,

• the total stored energy is 8 x 2 x 98.21061e-12 Ws = 8 x 2 x @eenergy.

We can now take our pocket calculator and perform the remaining calculations, or we
can use gd1.pp for it:

echo shuntimpedance is \

eval((2*@vreal)*(2*@vreal) / (2*@pi*@frequency * 8*2*@eenergy) ) Ohms

The full input for the postprocessor:

-general

infile= @last

-energy

symbol= e_1

doit

-lintegral

component= z, direction= z

startpoint= (0,0,@zmin)

doit

echo frequency is: eval(@frequency/1e6) MHz

echo shuntimpedance is \

eval((2*@vreal)*(2*@vreal) / (2*@pi*@frequency * 8*2*@eenergy) ) Ohms

gd1.pp tells us then:

frequency is: 503.4601030 MHz

shuntimpedance is 155.11998650323 Volts
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3.4 Computing quality factors Q

The quality factor Q is defined as

Q =
ωW

P
(3.3)

where

• ω is the circular resonant frequency,

• W is the total stored energy,

• P is the total power loss due to currents in lossy materials.

We know already from the previous pages how to compute the stored energy. What we
need now in addition is the computation of the power losses.

3.4.1 -wlosses: computation of wall losses with the pertubation

formula

We enter the section -wlosses. Its menu is:

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -wlosses #

##############################################################################

# symbol = e_1 #

# quantity = e #

# solution = 1 #

# frequency = auto -- [auto | Real] #

# #

# #

# @metalpower : undefined (symbol: undefined) #

##############################################################################

# doit, ?, return, end, help #

##############################################################################

Since the power losses are caused by currents flowing in metal, and the currents are
proportional to the tangential H-field at the metallic walls, we have to enter a H-field
as symbol or quantity.

-wlosses

quantity= h

solution= 1

doit
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The wall losses are computed as:

∫ ∫

H2

1/(2κδ)
dF (3.4)

1

δ
=

√

πfµ0κ (3.5)

The integral is performed over all metallic surfaces that would appear in a plot
as produced by the section -3darrowplot. This implies, that wall losses are NOT
computed for electric symmetry planes, since the material on the symmetry planes are
not shown in -3darrowplot.

The conductivities that are used in the pertubation formula may be entered in the
section -material. The result of the computation is available as the symbolic variable
@metalpower.

The resulting menu (with the default conductivities of copper) is

##############################################################################

# Flags: nomenu, prompt, message, #

##############################################################################

# section: -wlosses #

##############################################################################

# symbol = h_1 #

# quantity = h #

# solution = 1 #

# frequency = auto -- [auto | Real] #

# #

# #

# @metalpower : 16.21816e-6 (symbol: h_1) #

##############################################################################

# doit, ?, return, end, help #

##############################################################################

3.5 Voltages at different paths : How to steer gd1.pp

from a shell script

Our structure so far is a purely rotational symmetric one. Therefore, if the geometry
would have been modelled perfectly, the shunt-impedance (for the monopole mode) at
other locations (x,y)1 should be exactly the same2 as the shunt-impedance at (x,y)=(0,0).
We now use this property of rotational symmetric structures to estimate the discretisa-
tion error we have to live with.

1The locations (x,y) where the shunt impedance has to be the same are the locations where a beam
can travel.

2That the shunt-impedance for the monopole mode has to be constant follows from the Panofsky-
Wenzel theorem.
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It suffices to compute the voltage at different paths, the stored energy of course
is independent of the position (x,y). We compute the voltages at all positions (xi,0)
and (0,yi) that are available in the grid. These positions of the grid planes are avail-
able in gd1.pp as the symbolic functions @x(i), @y(i), @z(i). The total number of
grid planes are available as @nx, @ny, @nz. These symbols are only available after a
database has been specified in -general.

So, to compute the voltages at all possible positions (xi,0) we may say:

-lintegral

symbol= e_1

direction= z, component= z

do ix= 1, @nx

startpoint= ( @x(ix), 0, @zmin )

doit

echo voltage along ( @x0 , @y0 , z=z ) is @vreal @vimag @vabs

enddo

If we do this, we get a lot of messages on the screen. In order to have a nice graphic of
the dependence of the voltage on x, we better redirect the output to a file and process
the result slightly. We write a small shell script:

#!/bin/sh

#

# feed the postprocessor with a ’here’-document,

# ’tee’ the output of the postprocessor to the file "pp.out"

#

(gd1.pp | tee pp.out) << EOF

nomenu, noprompt, nomessage # no unneccessary output

-general, infile= @last

-lintegral

symbol= e_1

direction= z, component= z

do ix= 1, @nx

startpoint= ( @x(ix), 0, @zmin )

doit

echo @x0 @vreal @vimag # <= x, vreal, vimag

enddo

end

EOF

#

# Write a PlotMtv-header to "x-voltages.mtv".

#
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# Process the file "pp.out":

# ’grep’ the lines with the pattern "vreal"

#

echo \$ DATA= COLUMN > x-voltages.mtv

echo x vreal vimag >> x-voltages.mtv

grep vreal pp.out >> x-voltages.mtv

#

# now start "mymtv2" to display the data:

#

mymtv2 -mult -landscape x-voltages.mtv

3.4 This shell-script can be found as ”/usr/local/gd1/Tutorial-SRRC/x-voltages.x”. The
resulting plot is shown in figure 3.4. We see that the real part of the integrated voltage
is almost constant in the range |x| < 0.065m. The value of 0.065 m is the radius of the
entrance of the cavity. The imaginary part is not constant, but it would be, if we would
have modelled the full z-length of the geometry (it would be zero then).
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Figure 3.4: The real part and imaginary part of the integrated voltage as a function
of the position x. This plot has not been generated directly by gd1.pp, but has been
produced by a simple shell-script.
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Chapter 4

Computing Wakepotentials

In order to compute wakepotentials, we have to perform a time domain computation
with a line charge as excitation. The line charge travels with the velocity of light in
z-direction. Since there is only one charge traveling in positive z-direction, we loose a
symmetry plane. We change the borders of the computational volume to:

-mesh

define(STPSZE, InnerRadius/15)

spacing= STPSZE

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pxhigh= 0

pyhigh= 0

pzhigh= (GapLength/2+TaperLength+9e-2)

For the linecharge, we have to specify its total charge, its length, and the (x,y)-position
where it shall travel. We also have to say that we do not want to compute eigenvalues,
but we want to perform a time domain computation. We specify that at the lower and
upper z-planes absorbing boundary conditions shall be applied. In the section -time,
we specify that we want to have saved the fields at 90 equidistant times between the
time that the line charge has traveled 0.1 m and it has traveled 1 m.

We edit our inputfile, such that the end of it looks as:

-eigenvalues

solutions= 15

estimation= 2e9 # the estimated highest frequency

# doit

-fdtd

-lcharge

charge= 1e-12

sigma= 4*STPSZE

xposition= 0, yposition= 0
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shigh= 1.5

showdata= yes

-ports

name= beamlow , plane= zlow, modes= 3, npml= 40, doit

name= beamhigh, plane= zhigh, modes= 3, npml= 40, doit

-time

firstsaved= 0.1/@clight

lastsaved= 1/@clight

distancesaved= 0.1/@clight

-fdtd

doit

The so edited inputfile can be found as ”/usr/local/gd1/Tutorial-SRRC/doris05-wake.gdf”.
We start the computation by feeding gd1 the inputfile:

gd1 < doris05-wake.gdf | tee out

The computation only takes some minutes, since we compute a short range wake. When
the time domain iteration starts, gd1 detects that the specified wake path is tangential
to two magnetic walls. gd1 spits out:

## I am iterating Yee’s algorithm..

###################

# wake-computation:

# (x,y)-position of the line charge:

# specified (x,y)-position : ( 0.00000000 , 0.00000000 )

# used (x,y)-position : ( 0.00000000 , 0.00000000 )

# ix, iy : 60, 60

# min. distances : 0.00000000 .. 0.00000000

############ I am checking the beam-path..

#-- charge travels at upper x-plane.

#-- charge travels at upper y-plane.

#########################

# Wake computation:

# Since the charge travels along one or two symmetry-planes,

# only 25 % of the charge is considered traveling through

# the computational volume.

# The excited fields in the subvolume will be the same as if

# you were computing without the symmetry planes.

# The lossfactors as computed by the post-processor will be

# the same also.

#########################

The end of the output of gd1 (on a reasonably fast machine) is:
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timestep= 800, simulated time= 6.2198e-9 s

wakepotentials are known up to s= 1.1353 m

cpu time/sec: used: 64.11, since last call: 7.41, MFLOPs/s: 88.69

Wall clock time: 71.00 s, MFLOPs/s: 80.08

timestep= 900, simulated time= 6.9973e-9 s

wakepotentials are known up to s= 1.3672 m

cpu time/sec: used: 71.52, since last call: 7.41, MFLOPs/s: 89.45

Wall clock time: 79.00 s, MFLOPs/s: 80.98

The highest simulation time is reached .., I am stopping

################################

# cpu-seconds for FDTD : 75

# start date : 30/11/2002

# end date : 30/11/2002

# start time : 14:00:07

# end time : 14:02:14

## This is the normal end. Don’t worry.

## Start the postprocessor to look at the results.

stop FDTDLoop

4.1 Looking at Wakepotentials

We now take the advice and start gd1.pp to look at the results. We give gd1.pp the
following commands:

-general

infile= @last

-wakes

doit

This is: We load the database of the last run, then we enter the section -wakes and start
the computation of the wake-potentials with the default values. gd1.pp then computes
the wakepotentials from the data that were recorded by gd1. gd1.pp starts three
instances of mymtv2 to show the plots of the computed longitudinal and transverse
wakepotentials. The resulting screen is shown in figure 4.1. Since the structure in
reality is rotational symmetric, and the charge is traveling on the axis, the longitudinal
wakepotential should be independent of the (x,y) position of the test-charge. Also,
the transverse wakepotentials should vanish everywhere. But since GdfidL is a 3D-code
that computes in cartesian coordinates, the discretised geometry is not exactly rotational
symmetric. This is the reason why the transverse wakepotentials do not vanish exactly.
The computed transverse wakepotentials are 15 orders of magnitude lower than the
computed longitudinal wakepotential, though.

gd1.pp offers the choice to look at the longitudinal or transverse wakepotentials also
as a function of (x,s) at a specified plane y=y0 or as a function of (y,s) at a specified
plane x=x0.

We want to look at
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Figure 4.1: Screenshot of the desktop when the default values in -wakes are used. The
three instances of mymtv2 show the longitudinal and transverse wakepotentials at the
position of the line charge, ie at the position (x,y)=(0,0). The yellow curves show
the wakepotentials, the red curves show the used line-charge density. The upper left
mymtv2 shows the longitudinal wakepotential, while the lower two mymtv2-windows
show the transverse wakepotentials.
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Figure 4.2: Screenshot of the desktop when the plots of wakes in a plane are requested.
The two instances of mymtv2 show the longitudinal and transverse wakepotentials near
the plane y=0.

• the longitudinal wake in the plane x=0,

• and the x-wake in the plane x=0

We enter the commands

watxi= 0

wxatxi= 0

doit

The resulting screen is shown in figure 4.2. We see that the longitudinal wakepotential
is almost everywhere independent of the position x, only near the boundary this is not
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the case. The transverse potential, being proportional to the transverse gradient of the
longitudinal wakepotential, is therefore almost everywhere ’zero’, as it should be.

4.2 Looking at Wakefields

Since we specified

-time

firstsaved= 0.1/@clight

lastsaved= 1/@clight

distancesaved= 0.1/@clight

in the inputfile for gd1, gd1 did save the electric and magnetic fields at several times.
We look at the 30.th saved electric field:

-3darrow

symbol= e_4

arrows= 40000 # default is 1000

# but for wakefields, better take more

doit

The resulting plot is shown in figure 4.3 Since the field near the line charge is extremely
large (it is singular in reality), we see mostly field near the charge. In order to see the
field away from the line charge, we specify that we want to magnify the arrows by a
factor of 20, but we do not want to have any arrow larger than ”2”:

-3darrow

symbol= e_4

arrows= 40000 # default is 1000

# but for wakefields, better take more

lenarrows= 20 # <- magnify

maxlenarrows= 2 # .. but no arrow larger than "2"

doit

The resulting plot is shown in figure 4.4
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Figure 4.3: The electric field as induced by a line charge traveling on the axis. The
direction of the arrows indicate the direction of the field, and their size is proportional
to the absolute value of the field strength.
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Figure 4.4: The electric field as induced by a line charge traveling on the axis. The
direction of the arrows indicate the direction of the field. Their size now is not propor-
tional to the field strength, since we did specify that there should be a treshold value of
”maxlenarrows= 2”.
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Part II

Analysing the real 3D geometry
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Chapter 5

Modelling the geometry

The technical drawings that we have indicate that there are two tuning plungers at-
tached. There is also a pumping hole and some device that might be the coupling loop.
We ignore the pumping hole and the coupling loop now and model the two plungers.
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Figure 5.1: The technical drawing with the plungers, pumping hole and feeding loop.
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Figure 5.2: Details of the technical drawing, showing the plungers.

5.1 Modelling a Plunger

Both plungers are topologically the same. They consist of a tube where inside of the
tube a circular cylinder with a rounded cap sits in. A plunger is a body of revolution.
gd1 can model this directly. We edit our inputfile so that it contains:

#

# a plunger

#

define(PlungerRadius0, 110e-3/2 )

define(PlungerInnerRadius, 100e-3/2 )
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Figure 5.3: An outline of the body of revolution that shall decribe the body of a plunger.

define(PlungerCurvature, 16e-3)

-gbor

material= 10

originprime= (0,0,0)

zprimedirection= (0,0,1)

rprimedirection= (1,0,0)

range= (0,360)

clear

# point= (z,r)

point= ( 0,0 )

point= ( 0, PlungerInnerRadius-PlungerCurvature )

arc, radius= PlungerCurvature, size= small, type= counterclockwise

point= ( -PlungerCurvature, PlungerInnerRadius )

point= ( -170e-3, PlungerInnerRadius )

point= ( -170e-3, 0 )

show= now,

doit

The figure 5.3 shows an outline of the body of revolution that this decribes. This plunger
has its axis direction in z-direction. Our plungers shall have their axis lying in the x-y-
plane, with an angle of -90+22.5 and 17 degrees. In order to have the axis of our plunger
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Figure 5.4: The plunger now has its axis showing in the right direction.

direct in the proper direction, we change the values of zprimedirection, rprimedirection.
These two vectors define the local z’, r’ coordinate-system, in which the body of rev-
olution is described. We edit our inputfile:

define(PlungerAngle, (-90+22.5)*@pi/180 )

originprime= (0,0,0)

zprimedirection= ( -cos(PlungerAngle) ,\

-sin(PlungerAngle) ,\

0 )

rprimedirection= ( 0, 0, 1 )

The resulting outline is shown in figure 5.4. We are not done yet: The plunger is not
yet at the right position. The origin of the plunger shall not be at (x,y,z)=(0,0,0), but
at (x,y,z)=(r cos(ϕ), r sin(ϕ), 0), with ϕ = −90+25 degrees. We change our inputfile:

define(PlungerRadius0, OuterRadius-50e-3 )

define(PlungerAngle, (-90+22.5)*@pi/180 )

originprime= ( cos(PlungerAngle)*PlungerRadius0 ,\

sin(PlungerAngle)*PlungerRadius0 ,\

0 )

zprimedirection= ( -cos(PlungerAngle) ,\

-sin(PlungerAngle) ,\
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0 )

rprimedirection= ( 0, 0, 1 )

When we feed gd1 with this inputfile, we do not see the plunger in the plot of the
material-discretisation. The reason is: The plunger is outside of the specified compu-
tational volume. Since the geometry with the plunger does no longer have all three
symmetry-planes, we have to compute in a much larger volume. The only symmetry
plane left is the plane z=0. So we change the specifications for the boundaries of the
computational volume to:

###

### We define the borders of the computational volume,

### we define the default mesh-spacing,

### and we define the conditions at the borders:

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pxhigh= 1.1*OuterRadius

pyhigh= 1.1*OuterRadius

pzhigh= 0

#

# The conditions to use at the borders of the computational volume:

#

cxlow= electric, cxhigh= electric

cylow= electric, cyhigh= electric

czlow= electric, czhigh= electric

The so edited inputfile can be found as ”/usr/local/gd1/Tutorial-SRRC/wPlunger00.gdf”.
When we feed gd1 with this inputfile (gd1 < wPlunger00.gdf), we see a picture similiar
as the one shown in figure 5.5
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Figure 5.5: Screenshot of the desktop when the inputfile wPlunger00.gdf has been fed
into gd1.
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5.1.1 Using macros to model two plungers

Since we have to model two plungers, we could edit our inputfile to contain the descrip-
tion of the other plunger as well. But this is a good opportunity to use a macro.

Anywhere in an inputfile we can define macros. A macro is enclosed between two
lines: The first line contains the keyword macro followed by the name of the macro. All
lines until a line with only the keyword endmacro are considered the body of the macro.
When gd1 or gd1.pp find such a macro, they read it and store the body of the macro
in an internal buffer.

Example

#

# This defines a macro with name ’foo’

#

macro foo

echo I am foo, my first argument is @arg1

echo The total number of arguments supplied is @nargs

endmacro

When gd1 or gd1.pp find a call of the macro, the number of the supplied arguments is
assigned to the variable @nargs, and the variables @arg1, @arg2, .. are assigned the
values of the supplied parameters of the call. The values of the arguments are strings.
Of course it is possible to have a string eg. ’1e-4’ which happens to be interpreted in the
right context as a real number.

Example

#

# this calls ’foo’ with the arguments ’hi’, ’there’

#

call foo(hi, there)

Macro calls may be nested. The body of a macro may call another macro.

56



Macro ’InnerPlunger’

Since the two plungers are at different angles, and their radial positions are to be
changed, we parameterize our macro with arguments. We define a macro ’InnerPlunger’
that expects two arguments: The first argument is the radius where the plunger shall
be placed, and the second argument is the angle of the axis of the plunger:

#

# a plunger

#

macro InnerPlunger

define(PlungerRadius0, @arg1 ) # Argument of the call

define(PlungerAngle, @arg2*@pi/180 ) # Argument of the call

define(PlungerInnerRadius, 100e-3/2 )

define(PlungerCurvature, 16e-3)

-gbor

material= 10

origin= ( cos(PlungerAngle)*PlungerRadius0 ,\

sin(PlungerAngle)*PlungerRadius0 ,\

0 )

zprimedirection= ( -cos(PlungerAngle)*PlungerRadius0 ,\

-sin(PlungerAngle)*PlungerRadius0 ,\

0 )

rprimedirection= (0,0,1)

range= (0,360)

clear

# point= (z,r)

point= (0,0)

point= (0, PlungerInnerRadius-PlungerCurvature )

arc, radius= PlungerCurvature, size= small, type= counterclockwise

point= ( -PlungerCurvature, PlungerInnerRadius )

point= ( -170e-3, PlungerInnerRadius )

point= ( -170e-3, 0)

doit

endmacro # InnerPlunger

57



Macro ’OuterPlunger’

Since the tubes where the plungers are in are of different radii, and they are at different
angles, we must supply these parameters. For the tube where the plunger is in, we define
a macro ’OuterPlunger’ that expects two arguments: The first is the radius of the tube,
the second one is the angle of the axis of the tube:

macro OuterPlunger

define(PlungerOuterRadius, @arg1 )

define(PlungerAngle, (@arg2)*@pi/180 ) # Argument of the call

-gbor

material= 0

origin= ( cos(PlungerAngle)*OuterRadius,\

sin(PlungerAngle)*OuterRadius,\

0 )

zprimedirection= ( -cos(PlungerAngle),\

-sin(PlungerAngle),\

0 )

rprimedirection= (0,0,1)

range= (0,360)

clear

# point= (z,r)

point= ( 50e-3, 0 )

point= ( 50e-3, PlungerOuterRadius )

point= ( 50e-3, PlungerOuterRadius )

point= ( -235.39e-3, PlungerOuterRadius )

point= ( -235.39e-3, 50e-3)

point= ( -235.39e-3, 0)

doit

endmacro # OuterPlunger

We now model each of our two plungers with two calls:

#

# Model the tube and the plunger at phi=17 degrees:

#

call OuterPlunger( (130.75e-3/2) , 17 )

call InnerPlunger( (OuterRadius-50e-3), 17 )

#

# model the tube and the plunger at phi=-90+22.5 degrees:

#

call OuterPlunger( (110e-3/2) , (-90+22.5) )

call InnerPlunger( (OuterRadius-50e-3), (-90+22.5) )
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Figure 5.6: Screenshot of the desktop when the inputfile wPlunger01.gdf has been fed
into gd1. Shown is a zoom of the interesting region near the plungers.

The so edited inputfile can be found as /usr/local/gd1/Tutorial-SRRC/wPlunger01.gdf.
When we feed gd1 with this inputfile, we get a screen as shown in figure 5.6.
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5.2 Defining Material properties

gd1 does find an error in our inputfile. It complains:

eigenvalues> solutions= 15

eigenvalues> estimation= 2e9 # the estimated highest frequency

eigenvalues> doit

*** material 10 is used in item 4, but is undefined..

*** material 10 is used in item 6, but is undefined..

*** errors in settings

*** Since this not seems to be an interactive session,

*** I decide to treat this as a fatal error.

*** Fix the input.

stop

gd1 complains that we used a material index of ’10’ to model our plungers. The prop-
erties of this material ’10’ have not yet been defined. We doit by editing our inputfile,
such that before the eigenvalue computation starts, we have:

-material # enter the section "-material"

material= 10 # the properties of material "10" shall be changed.

type= electric # shall be treated as perfect electric conducting

# for the field computation

We did use the materials ’0’ and ’1’ as well. We did not define the properties of them,
but the default values of these materials are what we want (material ’0’ is vacuum,
material ’1’ is copper, and material ’2’ is perfect magnetic conducting).
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Chapter 6

Computing Eigenvalues

When we feed the so edited inputfile to gd1 (gd1 < wPlunger02.gdf), gd1 gives as final
table (on a reasonably fast machine):

boundary conditions:

xboundary= electric, electric

yboundary= electric, electric

zboundary= electric, electric

--------------------

i freq(i) acc(i) cont(i)

1 436.4010e+6 1.0044982017 1.0000000000 # "grep" for me

2 508.3705e+6 0.0014197280 0.0014201239 # "grep" for me

3 782.2763e+6 0.0000381458 0.0000535041 # "grep" for me

4 785.5885e+6 0.0002404450 0.0003882672 # "grep" for me

5 1.0476e+9 0.0000318869 0.0000629098 # "grep" for me

6 1.0620e+9 0.0002907024 0.0049598724 # "grep" for me

7 1.0930e+9 0.0002534295 0.0044621769 # "grep" for me

8 1.0985e+9 0.0001211415 0.0014816978 # "grep" for me

9 1.1436e+9 0.0003028035 0.0023958708 # "grep" for me

10 1.2149e+9 0.0040771062 0.0350091443 # "grep" for me

11 1.2437e+9 0.0074278316 0.1613287149 # "grep" for me

12 1.2652e+9 0.0671920760 1.0000000000 # "grep" for me

13 1.2845e+9 0.0265391147 0.5529007301 # "grep" for me

14 1.3151e+9 0.0376288530 0.3142827624 # "grep" for me

15 1.3935e+9 0.0930865808 0.8046319226 # "grep" for me

################################

# cpu-seconds for eigenvalues : 472

# start date : 30/11/2002

# end date : 30/11/2002

# start time : 21:41:36

# end time : 21:50:45
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# The computation of the eigenvalues has finished normally..

# Start the postprocessor to look at the results.

stop .. normal end ..

The first mode is garbage, as can be seen from its accuracy. But also the other modes
are not very good. The reason is: Since we have only a single symmetry plane left (z=0),
we have to compute in a volume that is four times as large as the volume before. In
such a large volume, there are much more modes than 15 in the frequency range from
0 to estimation (we specified an estimation of 2GHz). We could say that we want to
have more solutions, but that would drastically increases our memory consumption.
Since we are using already about 200 MBytes (our grid contains 1.2 million gridcells),
we do not want to do this. We could try to compute with the single precision version
of gd1, single.gd1, then we could compute 30 modes in 200 MByte. Instead we adjust
our estimation to 1.2 GHz. The end of our inputfile now is:

-eigenvalues

solutions= 15

estimation= 1.2e9 # the estimated highest frequency

doit

and the final table of a run (gd1 < wPlunger03.gdf) is

boundary conditions:

xboundary= electric, electric

yboundary= electric, electric

zboundary= electric, electric

--------------------

The first 2 solutions seem to be static and are not saved.

i freq(i) acc(i) cont(i)

1 508.3705e+6 0.0000027120 0.0000022258 # "grep" for me

2 782.2764e+6 0.0000000527 0.0000000740 # "grep" for me

3 785.5885e+6 0.0000000113 0.0000000182 # "grep" for me

4 1.0476e+9 0.0000000021 0.0000000042 # "grep" for me

5 1.0620e+9 0.0000000009 0.0000000155 # "grep" for me

6 1.0930e+9 0.0000000245 0.0000004322 # "grep" for me

7 1.0985e+9 0.0000000053 0.0000000651 # "grep" for me

8 1.1436e+9 0.0000000643 0.0000005090 # "grep" for me

9 1.2149e+9 0.0000675156 0.0005797832 # "grep" for me

10 1.2434e+9 0.0000015519 0.0000339391 # "grep" for me

11 1.2587e+9 0.0000055368 0.0001618450 # "grep" for me

12 1.2801e+9 0.0006670306 0.0200800431 # "grep" for me

13 1.2994e+9 0.0015633650 0.0522703164 # "grep" for me

################################

# cpu-seconds for eigenvalues : 747
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# start date : 30/11/2002

# end date : 30/11/2002

# start time : 21:52:37

# end time : 22:06:21

# The computation of the eigenvalues has finished normally..

# Start the postprocessor to look at the results.

stop .. normal end ..

The garbage mode has disappeared, and the accuracies the modes are very good.
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Chapter 7

Using gd1.pp to analyse the results

7.1 Transverse Kickfactors

Since our structure is no longer rotational symmetric, the shunt-impedance of the
monopole-mode is no longer independent of the position of the testcharge. Since a
real charge cloud has a finite extension in the x-y plane, the charges at different (x,y)
positions will experience a different accelerating voltage. This gives rise to an energy
spread. We can again use the shell-script of page 37 to compute the variation of the
accelerating voltage as a function of the x-position. For convenience, the shell script
’/usr/local/gd1/Tutorial-SRRC/x-voltages.x’ is shown here again:

#!/bin/sh

#

# feed the postprocessor with a ’here’-document,

# ’tee’ the output of the postprocessor to the file "pp.out"

#

(gd1.pp | tee pp.out) << EOF

nomenu, noprompt, nomessage # no unneccessary output

-general, infile= @last

-lintegral

symbol= e_1

direction= z, component= z

do ix= 1, @nx

startpoint= ( @x(ix), 0, @zmin )

doit

echo @x0 @vreal @vimag # <= x, vreal, vimag

enddo

end

EOF
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#

# Write a PlotMtv-header to "x-voltages.mtv".

#

# Process the file "pp.out":

# ’grep’ the lines with the pattern "vreal"

#

echo \$ DATA= COLUMN > x-voltages.mtv

echo x vreal vimag >> x-voltages.mtv

grep vreal pp.out >> x-voltages.mtv

#

# now start "mymtv2" to display the data:

#

mymtv2 -mult -landscape x-voltages.mtv

The resulting plot is shown in figure 7.1. There will of course be a variation of the
voltage on the y-position as well. One could analyse this with a similiar shell script.
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Figure 7.1: A plot of the real part and imaginary part of the accelerating voltage of
the monopole mode in the cavity with plungers. Only the real part would be nonzero,
if the symmetry plane at z=0 would not have been used. One can clearly see that the
accelerating voltage no longer is independent of the x-position.
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Chapter 8

Frequencies as a function of the

position of a plunger

The plungers will not have a fixed radial position, but they will be used for tuning the
cavity. To analyse the effect of the position of the plungers on some electric property of
the cavity, we can compute many different plunger positions and analyse the result. To
compute many different plunger positions, one could edit the inputfile for each positions
and compute. This would tediuos. There must be a better way.

8.1 Steering gd1 or gd1.pp from a shell script

We can steer gd1 or gd1.pp by adding an option -Dname=value when starting the
program. gd1 then defines a symbolic variable with name name to have the value
value. The effect is therefore the same as if in the very first line of its input, the line
sdefine(name, value) would occur. We write a small shell script that starts gd1

three times with three different values for the option.

#!/bin/sh

for POS1 in 0e-3 25e-3 50e-3

do

gd1 -Dposition1=$POS1 -Dposition2=0 \

< /usr/local/gd1/Tutorial-SRRC/wPlunger04.gdf | tee out.pos1=$POS1

done

This shell-script can be found as ’/usr/local/gd1/Tutorial-SRRC/many-pos1.x’. The
inputfile ’wPlunger04.gdf’ now calls the macros as follows:

#

# Model the tube and the plunger at phi=17 degrees:

#
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call OuterPlunger( (130.75e-3/2) , 17 )

call InnerPlunger( (OuterRadius-position1), 17 )

#

# model the tube and the plunger at phi=-90+22.5 degrees:

#

call OuterPlunger( (110e-3/2) , (-90+22.5) )

call InnerPlunger( (OuterRadius-position2), (-90+22.5) )

The actual positions are output as annotations by specifying in the section -general:

-general

text()= position1 : Position of the first plunger grep

text()= position2 : Position of the second plunger grep

When gd1 reads this, it will substitute the ’position1’ with the value that was sup-
plied to it via its commandline option -Dposition1=$POS1, the corresponding hap-
pens to the string ’position2’. The strings ’grep’ are supplied so that the outputfiles
out.pos1=$POS1 can be ’grep’ed for the string ’grep’. The full inputfile can be found
as /usr/local/gd1/Tutorial-SRRC/wPlunger04.gdf’.

When we run our shell script, we get three files

out.pos1=0e-3, out.pos1=25e-3, out.pos1=50e-3

where the computed frequencies can be found in. The relevant lines can be easily
extracted with the UNIX-command ’grep’. To show all lines in the files out.pos* that
contain the string ’grep’, you say

grep grep out.pos*

The result is:

out.pos1=0e-3: general> text()= 0e-3 : Position of the first plunger grep

out.pos1=0e-3: general> text()= 0 : Position of the second plunger grep

Position of the first plunger: 0e-3 grep

Position of the second plunger: 0 grep

out.pos1=0e-3: 1 52.7470e+06 1.0090174050 0.3438316719 # "grep" for me

out.pos1=0e-3: 2 502.5682e+06 0.0000031370 0.0000025505 # "grep" for me

out.pos1=0e-3: 3 778.1484e+06 0.0000000660 0.0000000914 # "grep" for me

out.pos1=0e-3: 4 779.3503e+06 0.0000000163 0.0000000249 # "grep" for me

out.pos1=0e-3: 5 1.0554e+09 0.0000000001 0.0000000002 # "grep" for me

out.pos1=0e-3: 6 1.0591e+09 0.0000000003 0.0000000045 # "grep" for me

out.pos1=0e-3: 7 1.0971e+09 0.0000000012 0.0000000173 # "grep" for me

out.pos1=0e-3: 8 1.0973e+09 0.0000000045 0.0000000428 # "grep" for me

out.pos1=0e-3: 9 1.1560e+09 0.0000000521 0.0000005213 # "grep" for me

out.pos1=0e-3: 10 1.1976e+09 0.0000001260 0.0000013792 # "grep" for me

out.pos1=0e-3: 11 1.2515e+09 0.0004255555 0.0049426207 # "grep" for me
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out.pos1=0e-3: 12 1.2656e+09 0.0016319888 0.0731105041 # "grep" for me

out.pos1=0e-3: 13 1.2668e+09 0.0025985547 1.0000000000 # "grep" for me

out.pos1=25e-3: general> text()= 25e-3 : Position of the first plunger grep

out.pos1=25e-3: general> text()= 0 : Position of the second plunger grep

out.pos1=25e-3: 25e-3 : Position of the first plunger grep

out.pos1=25e-3: 0 : Position of the second plunger grep

out.pos1=25e-3: 1 503.7682e+06 0.0000024488 0.0000019899 # "grep" for me

out.pos1=25e-3: 2 779.4209e+06 0.0000000124 0.0000000171 # "grep" for me

out.pos1=25e-3: 3 781.0514e+06 0.0000000431 0.0000000660 # "grep" for me

out.pos1=25e-3: 4 1.0575e+09 0.0000000027 0.0000000051 # "grep" for me

out.pos1=25e-3: 5 1.0595e+09 0.0000000002 0.0000000024 # "grep" for me

out.pos1=25e-3: 6 1.0968e+09 0.0000000062 0.0000000913 # "grep" for me

out.pos1=25e-3: 7 1.0975e+09 0.0000000018 0.0000000174 # "grep" for me

out.pos1=25e-3: 8 1.1555e+09 0.0000000372 0.0000003780 # "grep" for me

out.pos1=25e-3: 9 1.2018e+09 0.0000002208 0.0000025548 # "grep" for me

out.pos1=25e-3: 10 1.2529e+09 0.0007020442 0.0086314595 # "grep" for me

out.pos1=25e-3: 11 1.2675e+09 0.0009580488 0.0414770393 # "grep" for me

out.pos1=25e-3: 12 1.2746e+09 0.0020655866 0.1865897939 # "grep" for me

out.pos1=50e-3: general> text()= 50e-3 : Position of the first plunger grep

out.pos1=50e-3: general> text()= 0 : Position of the second plunger grep

out.pos1=50e-3: 50e-3 : Position of the first plunger grep

out.pos1=50e-3: 0 : Position of the second plunger grep

out.pos1=50e-3: 1 99.6144e+06 0.9656790469 0.3479304400 # "grep" for me

out.pos1=50e-3: 2 505.2467e+06 0.0000031189 0.0000025741 # "grep" for me

out.pos1=50e-3: 3 779.6769e+06 0.0000000046 0.0000000065 # "grep" for me

out.pos1=50e-3: 4 781.9646e+06 0.0000000537 0.0000000853 # "grep" for me

out.pos1=50e-3: 5 1.0479e+09 0.0000000086 0.0000000166 # "grep" for me

out.pos1=50e-3: 6 1.0605e+09 0.0000000016 0.0000000236 # "grep" for me

out.pos1=50e-3: 7 1.0955e+09 0.0000000193 0.0000003011 # "grep" for me

out.pos1=50e-3: 8 1.0983e+09 0.0000000036 0.0000000400 # "grep" for me

out.pos1=50e-3: 9 1.1477e+09 0.0000000200 0.0000001945 # "grep" for me

out.pos1=50e-3: 10 1.2055e+09 0.0000001903 0.0000020180 # "grep" for me

out.pos1=50e-3: 11 1.2473e+09 0.0031135695 0.0463915760 # "grep" for me

out.pos1=50e-3: 12 1.2570e+09 0.0168888927 0.6785522929 # "grep" for me

out.pos1=50e-3: 13 1.2726e+09 0.0118906521 0.4821503838 # "grep" for me

This usage of gd1 is the reason, why gd1 writes the string

"grep" for me

in the table of the frequencies.
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Chapter 9

Computing Wakepotentials

As with the cavity without plungers, when we want to compute wakepotentials, we
cannot use the symmetry plane of the geometry at z=0, since the excitation with the
line-charge is not symmetric. We change the borders of the computational volume to:

###

### We define the borders of the computational volume,

### we define the default mesh-spacing,

### and we define the conditions at the borders:

###

-mesh

spacing= InnerRadius/15

pxlow= -1.1*OuterRadius

pylow= -1.1*OuterRadius

pzlow = -(GapLength/2+TaperLength+9e-2)

pxhigh= 1.1*OuterRadius

pyhigh= 1.1*OuterRadius

pzhigh= (GapLength/2+TaperLength+9e-2)

#

# The conditions to use at the borders of the computational volume:

#

cxlow= electric, cxhigh= electric

cylow= electric, cyhigh= electric

czlow= electric, czhigh= electric

For the linecharge, we have to specify its total charge, its length, and the (x,y)-position
where it shall travel. We also have to say that we do not want to compute eigenvalues,
but we want to perform a time domain computation. We specify that at the lower and
upper z-planes absorbing boundary conditions shall be applied. In the section -time,
we specify that we want to have saved the fields at 10 equidistant times between the
time that the line charge has traveled 0.1 m and it has traveled 1 m.

We edit our inputfile, such that the end of it looks as:
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-eigenvalues

solutions= 15

estimation= 2e9 # the estimated highest frequency

# doit

-fdtd

-lcharge

charge= 1e-12

sigma= 4*STPSZE

xposition= 0, yposition= 0

shigh= 1.5

showdata= yes

-ports

name= beamlow , plane= zlow, modes= 3, npml= 40, doit

name= beamhigh, plane= zhigh, modes= 3, npml= 40, doit

-time

firstsaved= 0.1/@clight

lastsaved= 1/@clight

distancesaved= 0.1/@clight

-fdtd

doit

The so edited inputfile can be found as /usr/local/gd1/Tutorial-SRRC/wPlunger-wake.gdf.
When we feed gd1 with the edited inputfile,

gd1 < wPlunger-wake.gdf

gd1 stops and complains

# was: " call InnerPlunger( (OuterRadius-position1), 17 )"

gbor>

gbor> *** rnum: Bad Constant: starts here: "position1) "

evaluate me(:lenEvaluate): "(231.15e-3-position1) "

*** Status: "Bad factor :"p""

*** : "(231.15e-3-position1) "

|

*** Since this not seems to be an interactive session,

*** I decide to treat this as a fatal error.

*** Fix the input.

stop

We did not specify what the value of the symbols position1 and position2 shall be.
We do this by defining them on the commandline of gd1:
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gd1 -Dposition1=50e-3 -Dposition2=0 < wPlunger-wake.gdf

Now the computation runs. After some minutes, the last words of gd1 are:

timestep= 900, simulated time= 6.9214e-9 s

wakepotentials are known up to s= 1.3455 m

cpu time/sec: used: 300.13, since last call: 31.23, MFLOPs/s: 82.67

Wall clock time: 305.99 s, MFLOPs/s: 81.09

The highest simulation time is reached .., I am stopping

################################

# cpu-seconds for FDTD : 320

# start date : 30/11/2002

# end date : 30/11/2002

# start time : 22:25:31

# end time : 22:33:22

## This is the normal end. Don’t worry.

## Start the postprocessor to look at the results.

stop FDTDLoop
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Chapter 10

Analysing the results with gd1.pp

10.1 Looking at the wakefields with gd1.pp

We start gd1.pp and issue the commands:

-general

infile= @last

-3darrow

symbol= e_4

arrows= 40000

doit

The resulting screen is shown in figure 10.1. We only see the material approximation.
The field is plotted inside, but we cannot see it, since the plotted material boundaries
hide the field. We have several possibilities to look at the field: There is an option in
this section -3darrowplot. With this option we can switch on or off the plotting of the
material boundaries: materials= yes|no. The default value is materials= yes. We
select

materials= no

doit

Now we see the field, but no material anywhere. The resulting plot is shown in figure
10.2. We have another option to look inside the geometry. We can select that we only
want to see the field and the material boundaries that are lying within some bounding
box. We switch on the plotting of the materials again and specify that we do not want
to see anything above z=0:

materials= yes

bbzhigh= 0 # don’t plot anything above z=0

The resulting plot is shown in figure 10.3.
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Figure 10.1: Screenshot of the desktop showing the matrialdistribution and the wakefield
at some time. We cannot see the wakefield, since the material boundaries hide the field.
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Figure 10.2: Screenshot of the desktop when we switched off the plotting of the material-
boundaries.
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Figure 10.3: Screenshot of the desktop when we switched on the plotting of the material-
boundaries, but selected bbzhigh=0.
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10.2 Looking at the wakepotentials

We enter the section -wakes. When we are solely interested in the longitudinal and
transverse wakepotentials at the position of the line-charge, we do not have to specify
any special option, the default values are good for that. The default is to compute
and plot the longitudinal and transverse wakepotentials at the position of the exciting
charge. We say

-wakes

doit

The resulting plots are shown in figure 10.4. We look at the longitudinal wakepotential
as a function of (x,y) at the s-positions s=0.9m and s=1.1m by specifying

watsi= 0.9

watsi= 1.1

watq= no

doit

the watq= no instructs gd1.pp that we do not want to see again the wakepotentials
at the position of the linecharge. We did specify watsi= ?? twice, this means, that we
want to see the wakepotential at both s-coordinates. The resulting plots are shown in
figure 10.5.

10.2.1 Wakepotentials in the plane x=0 and y=0

We can look at the wakepotentials in any plane x=x0, y=y0. When we want to look at
the wakepotentials in the planes x=0 and y=0, we specify

watxi = 0

wxatxi= 0

wyatxi= 0

watyi = 0

wxatyi= 0

wyatyi= 0

doit

The resulting plots are shown in the figures 10.6 and 10.7
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Figure 10.4: Screenshot of the desktop when we just said ’doit’ in the section ’-wakes’.
gd1.pp has popped up three instances of mymtv2 that show the longitudinal and
transverse wakepotentials at the (x,y) position of the line-charge. The yellow curves are
the wakepotentials, and the red curve is the charge density of the line-charge.
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Figure 10.5: Screenshot of the desktop showing the longitudinal wakepotential in the
cross section of the beam-pipe where a beam can travel.
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Figure 10.6: Screenshot of the desktop showing the longitudinal and transverse wake-
potential near the plane x=0.
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Figure 10.7: Screenshot of the desktop showing the longitudinal and transverse wake-
potential near the plane y=0.
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This is the end of this tutorial.
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